Cargando…

Fluvial-tidal sedimentology /

Fluvial-Tidal Sedimentology provides information on the 'Tidal-Fluvial Transition', the transition zone between river and tidal environments, and includes contributions that address some of the most fundamental research questions, including how the morphology of the tidal-fluvial transitio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ashworth, Philip J., Best, J. L., Parsons, Daniel R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, �2015.
Edición:First edition.
Colección:Developments in sedimentology ; v. 68.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover
  • Fluvial-Tidal Sedimentology
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Part 1: Context
  • Chapter 1: Deciphering the relative importance of fluvial and tidal processes in the fluvial-marine transition
  • 1.1. Introduction
  • 1.2. Process Framework for the Fluvial-Tidal Transition
  • 1.3. Setting of the Case Studies Used in This Chapter
  • 1.3.1. Lajas Formation, Neuqu�en Basin, Argentina
  • 1.3.2. McMurray Formation, Northern Alberta
  • 1.3.3. Neslen Formation, Book Cliffs, Utah
  • 1.3.4. Tilje Formation, Offshore Norway
  • 1.3.5. Bluesky Formation, Peace River Area, Alberta
  • 1.4. Description and Interpretation of the Case Studies
  • 1.4.1. Case Study1: Lower Lajas Formation
  • 1.4.2. Case Study2: McMurray Formation
  • 1.4.3. Case Study3: Middle Lajas Formation
  • 1.4.4. Case Study4: Middle Neslen Formation
  • 1.4.5. Case Study5: Middle Neslen Formation
  • 1.4.6. Case Study6: Tilje Formation
  • 1.4.7. Case Study7: Bluesky Formation
  • 1.5. Discussion
  • 1.6. Conclusions
  • Acknowledgments
  • References
  • Part 2: Modern
  • Chapter 2: Estuarine turbidity maxima revisited: Instrumental approaches, remote sensing, modeling studies, and new direction
  • 2.1. Introduction
  • 2.1.1. Purpose: Toward a New Understanding
  • 2.1.2. What Is an ETM and Why Does It Matter?
  • 2.1.3. Scope of Paper
  • 2.2. In Situ Measurements: Recent Advances
  • 2.2.1. Acoustical Measurements and Instruments
  • 2.2.1.1. Uses of the Acoustic Doppler Velocimeter
  • 2.2.1.2. ADCP methods
  • 2.2.1.3. Other acoustic methods
  • 2.2.2. Optical Measurements and Instruments
  • 2.2.2.1. Optical backscatter sensors
  • 2.2.2.2. The laser in situ scattering transmissometer
  • 2.2.2.3. Holography and floc cameras
  • 2.2.2.4. Inherent optical property measurements and theoretical modeling of particle optics.
  • 2.3. Building an Integral Understanding of ETM via Remote Sensing: Possibilities and Challenges
  • 2.3.1. Measuring Turbidity Remotely
  • 2.3.2. Lessons Learned from Remote Measurements in Estuaries
  • 2.4. ETM Dynamic: Insights from Theory, Modeling and Observations
  • 2.4.1. Estuarine Circulation and ETM Formation
  • 2.4.2. The Traditional Model
  • 2.4.3. More Complex Models
  • 2.4.4. Integral Analysis of a Channelized ETM
  • 2.5. Discussion: Toward a More Complete Understanding of ETM Dynamics
  • 2.5.1. Making Use of New In Situ and Remote Sensing Capabilities
  • 2.5.2. Dynamical Questions
  • 2.5.2.1. Trapping mechanisms and the material trapped
  • 2.5.2.2. Nonstationary aspects of ETM
  • 2.5.2.3. Distinguishing human and climatic impacts on ETM dynamics and ecosystems
  • 2.5.2.4. ETM dynamics and contaminants
  • 2.6. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 3: Sedimentological trends across the tidal-fluvial transition, Fraser River, Canada: A review and some broader impli
  • 3.1. Introduction
  • 3.1.1. Fraser River, Canada
  • 3.2. Depositional Trends Across the TFT of the Fraser River
  • 3.2.1. Sedimentological Trends
  • 3.2.2. Ichnological Trends
  • 3.2.3. Palynological and Geochemical Trends
  • 3.3. The Broader Implications of Depositional Trends from the Lower Fraser River
  • 3.3.1. Expected Variations in Depositional Trends
  • 3.4. Conclusions
  • References
  • Chapter 4: Three-dimensional meander bend flow within the tidally influenced fluvial zone
  • 4.1. Introduction
  • 4.2. Methods
  • 4.2.1. Field Area
  • 4.2.2. Field Methods
  • 4.3. Results
  • 4.3.1. High River-Neap Tide
  • 4.3.2. Low River-Spring Tide
  • 4.3.3. Repeated Bend Apex Measurements at LRST
  • 4.4. Discussion
  • 4.5. Conclusions
  • References.
  • Chapter 5: Sedimentology of a tidal point-bar within the fluvial-tidal transition: River Severn Estuary, UK
  • 5.1. Introduction
  • 5.2. Severn Estuary
  • 5.2.1. Sampling Sites
  • 5.3. Methods
  • 5.3.1. Stratigraphic Descriptions
  • 5.3.1.1. Pollen descriptions
  • 5.4. Results
  • 5.4.1. Sedimentary Facies
  • 5.4.1.1. F1: Red mudstone
  • 5.4.1.2. F2: Blue clay facies
  • 5.4.1.3. F3: Poorly sorted coarse sand and gravel facies
  • 5.4.1.4. F4: Homogeneous sand facies
  • 5.4.1.5. F5: Heterolithic facies
  • 5.4.1.6. F6: Orange-brown silty-mud facies
  • 5.4.1.7. F7: Gray-dark organic matter stratification in a mud matrix facies
  • 5.4.1.8. F8: Gray-brown marsh facies
  • 5.4.2. Summary of Facies Assemblages
  • 5.4.3. Distinctiveness of the Transitional Facies Assemblage
  • 5.4.3.1. The first unit is the marsh (F8) facies
  • 5.4.3.2. The second unit is the heterolithic facies (F5)
  • 5.4.3.3. The third unit is constituted of fine to coarse sand (F3+F4)
  • 5.4.3.4. Box tray samples of Rodley sand bar
  • 5.4.4. Pollen
  • 5.4.4.1. Fluvial (Core 4)
  • 5.4.4.2. Transition (Core 5)
  • 5.4.4.3. Marine (Core 7)
  • 5.4.4.4. Detrended correspondence analysis
  • 5.4.5. Diatoms
  • 5.4.5.1. Fluvial (Core 4)
  • 5.4.5.2. Transitional (Core 5)
  • 5.4.5.3. Marine (Core 7)
  • 5.5. Discussion
  • 5.5.1. Allogenic Processes
  • 5.5.2. Autogenic Processes
  • 5.5.3. Model of Deposition
  • 5.6. Conclusions
  • Acknowledgments
  • References
  • Part 3: Ancient
  • Chapter 6: Mid to late Holocene geomorphological and sedimentological evolution of the fluvial-tidal zone: Lower Columbia Riv
  • 6.1. Introduction
  • 6.2. Background
  • 6.2.1. LCR: Geological Setting and Study Reach
  • 6.3. Methodologies
  • 6.3.1. Sediment Core Collection and OSL Sampling
  • 6.3.2. OSL Laboratory Analysis
  • 6.4. Results
  • 6.4.1. Mid-Holocene to Present Depositional Patterns.
  • 6.4.2. LCR Depositional Patterns: 4.3-2.0ka
  • 6.4.3. LCR Depositional Patterns: 2.0-1.0ka
  • 6.4.4. LCR Depositional Patterns: 1.0ka to Present
  • 6.5. Discussion
  • 6.5.1. LCR Mid to Late Holocene Depositional Setting: "Bay-Head Delta" Hypothesis?
  • 6.5.2. LCR Mid to Late Holocene Geomorphic/Sedimentological Model
  • 6.6. Conclusions
  • Acknowledgments
  • References
  • Chapter 7: Palaeo-Orinoco (Pliocene) channels on the tide-dominated Morne L'Enfer delta lobes and estuaries, SW Trinidad
  • 7.1. Introduction
  • 7.2. Geological Background
  • 7.2.1. Regional Tectonic and Stratigraphic Setting
  • 7.2.2. Methodology and Data Sets
  • 7.2.3. Architecture of Deltaic and Estuarine Units in the MLE Succession
  • 7.3. Palaeo-Orinoco Context of Tidal-Fluvial Channels
  • 7.4. Criteria for the Recognition of Tidal Signals in and Around the Channels
  • 7.4.1. Fluid mud Layers
  • 7.4.2. Palaeoflow Indicators: Bidirectional Ripples
  • 7.4.3. Cross-Strata
  • 7.4.4. Tidal Rhythmites
  • 7.4.4.1. Rhythmites with tidal bundling from asymmetric tidal cycles (with double mud drapes)
  • 7.4.4.2. Tidal bundling from a series of spring-neap tides
  • 7.4.5. Flaser (Frequent Mud Drapes), Wavy, Lenticular, and "Pin-Stripe" Bedding
  • 7.5. Examples of Palaeo-Orinoco Tidal-Fluvial Channels
  • 7.5.1. Regressive Channels (Delta Plain and Delta-Front Distributary Channels)
  • 7.5.1.1. Fluvial-tidal distributary channels on delta plain or entering embayment
  • 7.5.1.2. Fluvial-tidal distributary channels cutting down onto the delta front
  • 7.5.2. Transgressive Estuarine Channels
  • 7.5.2.1. Transgressive inner estuarine channel
  • 7.5.2.2. Transgressive outer estuarine channel
  • 7.5.3. Facies Comparison Between Regressive and Transgressive Tidal Channels
  • 7.6. Discussion
  • 7.7. Conclusions
  • Acknowledgments
  • References.
  • Chapter 8: The ichnology of the fluvial-tidal transition: Interplay of ecologic and evolutionary controls
  • 8.1. Introduction
  • 8.2. Ecologic Controls on the Ichnofauna at the Fluvial-Tidal Zone: Insights from Neoichnology
  • 8.3. Case Studies
  • 8.3.1. Carboniferous of Kansas (Tonganoxie Sandstone Member)
  • 8.3.2. Upper Carboniferous of Nova Scotia (Coal Mine Point Channel Body)
  • 8.3.3. Upper Carboniferous of Alabama (Mary Lee Coal Zone)
  • 8.3.4. Upper Carboniferous of Indiana (Mansfield Formation)
  • 8.3.5. Lower Permian of New Mexico (Robledo Mountains Formation)
  • 8.3.6. Upper Cretaceous of Spain (Tremp Formation)
  • 8.3.7. Lower Oligocene to lower Miocene of Venezuela (Guafita Formation)
  • 8.3.8. Lower Miocene of Venezuela (Oficina Formation)
  • 8.3.9. Lower Miocene of Northern Brazil (Barreiras Formation)
  • 8.3.10. Upper Miocene of Western Brazil (Solim�oes Formation)
  • 8.4. Summary of Observations and Discussion: Ecologic and Evolutionary Controls
  • 8.4.1. Ecologic Controls
  • 8.4.2. Evolutionary Controls
  • 8.5. Conclusions
  • Acknowledgments
  • References
  • Chapter 9: A reappraisal of large, heterolithic channel fills in the upper Permian Rangal Coal Measures of the Bowen Basin, Q
  • 9.1. Introduction
  • 9.2. Geological Setting
  • 9.3. Previous Research
  • 9.4. Facies Analysis
  • 9.5. Evidence for Tidal Influence
  • 9.5.1. Stratigraphic Context
  • 9.5.2. Inclined Heterolithic Stratification
  • 9.5.3. Small-Scale Sedimentary Structures and Trace Fossils
  • 9.5.4. Palaeocurrent Data
  • 9.5.5. Fossil Fish
  • 9.6. Discussion
  • 9.7. Conclusions
  • Acknowledgments
  • References
  • Chapter 10: Facies and architecture of unusual fluvial-tidal channels with inclined heterolithic strata: Campanian Neslen For
  • 10.1. Introduction
  • 10.2. Regional Geology and Previous Work.