Fluvial-tidal sedimentology /
Fluvial-Tidal Sedimentology provides information on the 'Tidal-Fluvial Transition', the transition zone between river and tidal environments, and includes contributions that address some of the most fundamental research questions, including how the morphology of the tidal-fluvial transitio...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
�2015.
|
Edición: | First edition. |
Colección: | Developments in sedimentology ;
v. 68. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Front Cover
- Fluvial-Tidal Sedimentology
- Copyright
- Contents
- Contributors
- Preface
- Part 1: Context
- Chapter 1: Deciphering the relative importance of fluvial and tidal processes in the fluvial-marine transition
- 1.1. Introduction
- 1.2. Process Framework for the Fluvial-Tidal Transition
- 1.3. Setting of the Case Studies Used in This Chapter
- 1.3.1. Lajas Formation, Neuqu�en Basin, Argentina
- 1.3.2. McMurray Formation, Northern Alberta
- 1.3.3. Neslen Formation, Book Cliffs, Utah
- 1.3.4. Tilje Formation, Offshore Norway
- 1.3.5. Bluesky Formation, Peace River Area, Alberta
- 1.4. Description and Interpretation of the Case Studies
- 1.4.1. Case Study1: Lower Lajas Formation
- 1.4.2. Case Study2: McMurray Formation
- 1.4.3. Case Study3: Middle Lajas Formation
- 1.4.4. Case Study4: Middle Neslen Formation
- 1.4.5. Case Study5: Middle Neslen Formation
- 1.4.6. Case Study6: Tilje Formation
- 1.4.7. Case Study7: Bluesky Formation
- 1.5. Discussion
- 1.6. Conclusions
- Acknowledgments
- References
- Part 2: Modern
- Chapter 2: Estuarine turbidity maxima revisited: Instrumental approaches, remote sensing, modeling studies, and new direction
- 2.1. Introduction
- 2.1.1. Purpose: Toward a New Understanding
- 2.1.2. What Is an ETM and Why Does It Matter?
- 2.1.3. Scope of Paper
- 2.2. In Situ Measurements: Recent Advances
- 2.2.1. Acoustical Measurements and Instruments
- 2.2.1.1. Uses of the Acoustic Doppler Velocimeter
- 2.2.1.2. ADCP methods
- 2.2.1.3. Other acoustic methods
- 2.2.2. Optical Measurements and Instruments
- 2.2.2.1. Optical backscatter sensors
- 2.2.2.2. The laser in situ scattering transmissometer
- 2.2.2.3. Holography and floc cameras
- 2.2.2.4. Inherent optical property measurements and theoretical modeling of particle optics.
- 2.3. Building an Integral Understanding of ETM via Remote Sensing: Possibilities and Challenges
- 2.3.1. Measuring Turbidity Remotely
- 2.3.2. Lessons Learned from Remote Measurements in Estuaries
- 2.4. ETM Dynamic: Insights from Theory, Modeling and Observations
- 2.4.1. Estuarine Circulation and ETM Formation
- 2.4.2. The Traditional Model
- 2.4.3. More Complex Models
- 2.4.4. Integral Analysis of a Channelized ETM
- 2.5. Discussion: Toward a More Complete Understanding of ETM Dynamics
- 2.5.1. Making Use of New In Situ and Remote Sensing Capabilities
- 2.5.2. Dynamical Questions
- 2.5.2.1. Trapping mechanisms and the material trapped
- 2.5.2.2. Nonstationary aspects of ETM
- 2.5.2.3. Distinguishing human and climatic impacts on ETM dynamics and ecosystems
- 2.5.2.4. ETM dynamics and contaminants
- 2.6. Summary and Conclusions
- Acknowledgments
- References
- Chapter 3: Sedimentological trends across the tidal-fluvial transition, Fraser River, Canada: A review and some broader impli
- 3.1. Introduction
- 3.1.1. Fraser River, Canada
- 3.2. Depositional Trends Across the TFT of the Fraser River
- 3.2.1. Sedimentological Trends
- 3.2.2. Ichnological Trends
- 3.2.3. Palynological and Geochemical Trends
- 3.3. The Broader Implications of Depositional Trends from the Lower Fraser River
- 3.3.1. Expected Variations in Depositional Trends
- 3.4. Conclusions
- References
- Chapter 4: Three-dimensional meander bend flow within the tidally influenced fluvial zone
- 4.1. Introduction
- 4.2. Methods
- 4.2.1. Field Area
- 4.2.2. Field Methods
- 4.3. Results
- 4.3.1. High River-Neap Tide
- 4.3.2. Low River-Spring Tide
- 4.3.3. Repeated Bend Apex Measurements at LRST
- 4.4. Discussion
- 4.5. Conclusions
- References.
- Chapter 5: Sedimentology of a tidal point-bar within the fluvial-tidal transition: River Severn Estuary, UK
- 5.1. Introduction
- 5.2. Severn Estuary
- 5.2.1. Sampling Sites
- 5.3. Methods
- 5.3.1. Stratigraphic Descriptions
- 5.3.1.1. Pollen descriptions
- 5.4. Results
- 5.4.1. Sedimentary Facies
- 5.4.1.1. F1: Red mudstone
- 5.4.1.2. F2: Blue clay facies
- 5.4.1.3. F3: Poorly sorted coarse sand and gravel facies
- 5.4.1.4. F4: Homogeneous sand facies
- 5.4.1.5. F5: Heterolithic facies
- 5.4.1.6. F6: Orange-brown silty-mud facies
- 5.4.1.7. F7: Gray-dark organic matter stratification in a mud matrix facies
- 5.4.1.8. F8: Gray-brown marsh facies
- 5.4.2. Summary of Facies Assemblages
- 5.4.3. Distinctiveness of the Transitional Facies Assemblage
- 5.4.3.1. The first unit is the marsh (F8) facies
- 5.4.3.2. The second unit is the heterolithic facies (F5)
- 5.4.3.3. The third unit is constituted of fine to coarse sand (F3+F4)
- 5.4.3.4. Box tray samples of Rodley sand bar
- 5.4.4. Pollen
- 5.4.4.1. Fluvial (Core 4)
- 5.4.4.2. Transition (Core 5)
- 5.4.4.3. Marine (Core 7)
- 5.4.4.4. Detrended correspondence analysis
- 5.4.5. Diatoms
- 5.4.5.1. Fluvial (Core 4)
- 5.4.5.2. Transitional (Core 5)
- 5.4.5.3. Marine (Core 7)
- 5.5. Discussion
- 5.5.1. Allogenic Processes
- 5.5.2. Autogenic Processes
- 5.5.3. Model of Deposition
- 5.6. Conclusions
- Acknowledgments
- References
- Part 3: Ancient
- Chapter 6: Mid to late Holocene geomorphological and sedimentological evolution of the fluvial-tidal zone: Lower Columbia Riv
- 6.1. Introduction
- 6.2. Background
- 6.2.1. LCR: Geological Setting and Study Reach
- 6.3. Methodologies
- 6.3.1. Sediment Core Collection and OSL Sampling
- 6.3.2. OSL Laboratory Analysis
- 6.4. Results
- 6.4.1. Mid-Holocene to Present Depositional Patterns.
- 6.4.2. LCR Depositional Patterns: 4.3-2.0ka
- 6.4.3. LCR Depositional Patterns: 2.0-1.0ka
- 6.4.4. LCR Depositional Patterns: 1.0ka to Present
- 6.5. Discussion
- 6.5.1. LCR Mid to Late Holocene Depositional Setting: "Bay-Head Delta" Hypothesis?
- 6.5.2. LCR Mid to Late Holocene Geomorphic/Sedimentological Model
- 6.6. Conclusions
- Acknowledgments
- References
- Chapter 7: Palaeo-Orinoco (Pliocene) channels on the tide-dominated Morne L'Enfer delta lobes and estuaries, SW Trinidad
- 7.1. Introduction
- 7.2. Geological Background
- 7.2.1. Regional Tectonic and Stratigraphic Setting
- 7.2.2. Methodology and Data Sets
- 7.2.3. Architecture of Deltaic and Estuarine Units in the MLE Succession
- 7.3. Palaeo-Orinoco Context of Tidal-Fluvial Channels
- 7.4. Criteria for the Recognition of Tidal Signals in and Around the Channels
- 7.4.1. Fluid mud Layers
- 7.4.2. Palaeoflow Indicators: Bidirectional Ripples
- 7.4.3. Cross-Strata
- 7.4.4. Tidal Rhythmites
- 7.4.4.1. Rhythmites with tidal bundling from asymmetric tidal cycles (with double mud drapes)
- 7.4.4.2. Tidal bundling from a series of spring-neap tides
- 7.4.5. Flaser (Frequent Mud Drapes), Wavy, Lenticular, and "Pin-Stripe" Bedding
- 7.5. Examples of Palaeo-Orinoco Tidal-Fluvial Channels
- 7.5.1. Regressive Channels (Delta Plain and Delta-Front Distributary Channels)
- 7.5.1.1. Fluvial-tidal distributary channels on delta plain or entering embayment
- 7.5.1.2. Fluvial-tidal distributary channels cutting down onto the delta front
- 7.5.2. Transgressive Estuarine Channels
- 7.5.2.1. Transgressive inner estuarine channel
- 7.5.2.2. Transgressive outer estuarine channel
- 7.5.3. Facies Comparison Between Regressive and Transgressive Tidal Channels
- 7.6. Discussion
- 7.7. Conclusions
- Acknowledgments
- References.
- Chapter 8: The ichnology of the fluvial-tidal transition: Interplay of ecologic and evolutionary controls
- 8.1. Introduction
- 8.2. Ecologic Controls on the Ichnofauna at the Fluvial-Tidal Zone: Insights from Neoichnology
- 8.3. Case Studies
- 8.3.1. Carboniferous of Kansas (Tonganoxie Sandstone Member)
- 8.3.2. Upper Carboniferous of Nova Scotia (Coal Mine Point Channel Body)
- 8.3.3. Upper Carboniferous of Alabama (Mary Lee Coal Zone)
- 8.3.4. Upper Carboniferous of Indiana (Mansfield Formation)
- 8.3.5. Lower Permian of New Mexico (Robledo Mountains Formation)
- 8.3.6. Upper Cretaceous of Spain (Tremp Formation)
- 8.3.7. Lower Oligocene to lower Miocene of Venezuela (Guafita Formation)
- 8.3.8. Lower Miocene of Venezuela (Oficina Formation)
- 8.3.9. Lower Miocene of Northern Brazil (Barreiras Formation)
- 8.3.10. Upper Miocene of Western Brazil (Solim�oes Formation)
- 8.4. Summary of Observations and Discussion: Ecologic and Evolutionary Controls
- 8.4.1. Ecologic Controls
- 8.4.2. Evolutionary Controls
- 8.5. Conclusions
- Acknowledgments
- References
- Chapter 9: A reappraisal of large, heterolithic channel fills in the upper Permian Rangal Coal Measures of the Bowen Basin, Q
- 9.1. Introduction
- 9.2. Geological Setting
- 9.3. Previous Research
- 9.4. Facies Analysis
- 9.5. Evidence for Tidal Influence
- 9.5.1. Stratigraphic Context
- 9.5.2. Inclined Heterolithic Stratification
- 9.5.3. Small-Scale Sedimentary Structures and Trace Fossils
- 9.5.4. Palaeocurrent Data
- 9.5.5. Fossil Fish
- 9.6. Discussion
- 9.7. Conclusions
- Acknowledgments
- References
- Chapter 10: Facies and architecture of unusual fluvial-tidal channels with inclined heterolithic strata: Campanian Neslen For
- 10.1. Introduction
- 10.2. Regional Geology and Previous Work.