Engineered nanoparticles : structure, properties and mechanisms of toxicity /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Dedication
- ENGINEERED NANOPARTICLES: STRUCTURE, PROPERTIES AND MECHANISMS OF TOXICITY
- Copyright
- Contents
- Foreword
- 1
- Introduction to Nanoparticles and Nanotoxicology
- 1. INTRODUCTION TO NANOPARTICLES
- 1.1 Historical Aspects
- 1.2 Nanotechnology
- 1.3 Atoms, Nanoparticles, and Bulk Materials
- 1.4 Classification of Nanoparticles
- 1.4.1 Dimension-Based Classification
- 1.4.2 Natural or Anthropogenic Nanoparticles
- 1.4.3 Classification of Nanoparticles According to Their Chemistry
- 1.4.4 Isotropic and Anisotropic Nanoparticles
- 1.4.5 Nanoparticle Classification Based on Application
- 2. INTRODUCTION TO NANOTOXICOLOGY
- 2.1 Dose-Response Relationship for Bulk Particles
- 2.2 Is the Mass-Based Dose-Response Relevant to Nanotoxicology?
- 2.3 Redefining the Dose
- 2.4 Exposure of Humans and Animals to Nanoparticles
- 2.5 Nanoparticles in the Environment
- 2.6 Fate and Toxicity of Nanoparticles
- 2.6.1 Necrosis
- 2.6.2 Membrane Toxicity
- 2.6.3 DNA Cleavage
- 3. CONCLUSIONS
- References
- 2
- Structure, Synthesis, and Application of Nanoparticles
- 1. INTRODUCTION
- 2. METAL, SEMICONDUCTOR, AND QUANTUM DOT NANOPARTICLES
- 2.1 Structure and Synthesis
- 2.1.1 Metal Nanoparticles
- 2.1.1.1 STRUCTURE OF METAL NANOPARTICLES
- 2.1.1.2 SYNTHESIS OF METAL NANOPARTICLES
- 2.1.1.2.1 BOTTOM-UP METHODS
- 2.1.1.2.2 TOP-DOWN NANOFABRICATION
- 2.1.2 Paramagnetic Metal Nanoparticles
- 2.1.2.1 STRUCTURE OF PARAMAGNETIC NANOPARTICLES
- 2.1.2.2 SYNTHESIS OF PARAMAGNETIC NANOPARTICLES
- 2.1.3 Porous and Hollow Metal Nanoparticles
- 2.1.3.1 STRUCTURE OF POROUS AND HOLLOW METAL NANOPARTICLES
- 2.1.3.2 SYNTHESIS OF POROUS AND HOLLOW METAL NANOPARTICLES
- 2.1.3.2.1 POROUS SILICA
- 2.1.3.2.2 HOLLOW SILICA NANOCAPSULES
- 2.1.4 Semiconductor Nanocrystals and Quantum Dots.
- 2.1.4.1 STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS
- 2.1.4.2 STRUCTURE OF QUANTUM DOTS
- 2.1.4.3 SYNTHESIS OF SEMICONDUCTOR NANOCRYSTALS AND QUANTUM DOTS
- 2.1.4.3.1 TPOP/TOP PROCEDURE FOR NANOCRYSTALS
- 2.1.4.3.2 THE CO-PRECIPITATION METHOD FOR NANOCRYSTALS
- 2.1.4.3.3 SYNTHESIS OF QUANTUM DOTS
- 2.1.5 Functionalization of Metal, Semiconductor, or Quantum Dot Nanoparticles
- 2.1.5.1 FUNCTIONALIZATION FOR IMPROVED DISPERSION AND DISSOLUTION
- 2.1.5.2 FUNCTIONALIZATION OF PEG FOR MEDICINAL/SCREENING APPLICATIONS
- 2.1.5.3 ACID OR ENZYME CLEAVABLE LINKERS
- 2.1.5.4 METAL NANOPARTICLES FUNCTIONALIZED WITH TUNABLE SWITCHES
- 2.1.5.5 NONCOVALENT FUNCTIONALIZATION
- 2.1.6 Nanoparticle Characterization
- 2.2 Applications of Metal Nanoparticles
- 2.2.1 Environmental Applications
- 2.2.2 Biomedical Applications
- 2.2.2.1 IMAGING
- 2.2.3 Drug Delivery
- 2.2.4 Metal Nanoparticle-Based Sensors
- 3. CARBON NANOTUBES AND FULLERENES
- 3.1 Structure and Synthesis
- 3.1.1 Structure of CNTs and Fullerenes
- 3.1.2 CNT Synthesis (Gore and Sane, 2011)
- 3.1.2.1 ARC-DISCHARGE METHOD (JUNG ET AL., 2002
- LAI ET AL., 2001
- TAN AND MIENO, 2010
- XING ET AL., 2007)
- 3.1.2.2 LASER ABLATION METHOD (CHENA ET AL., 2005
- GUO ET AL., 1995
- THESS ET AL., 1996)
- 3.1.2.3 CHEMICAL VAPOR DEPOSITION (DANAFAR ET AL., 2011)
- 3.1.2.4 HYDROCARBON FLAMES (CHENG ET AL., 1998
- EBBESEN AND AJAYAN, 1992)
- 3.1.2.5 CNT SYNTHESIS USING TWISTED GRAPHENE RIBBONS (NANO-TEST TUBE CHEMISTRY)
- 3.1.3 Synthesis of Fullerenes
- 3.1.4 Carbon Nanotube Purification
- 3.1.5 Structural Defects and Reactivity
- 3.1.6 CNT Functionalization
- 3.1.6.1 COVALENT FUNCTIONALIZATION
- 3.1.6.2 NONCOVALENT FUNCTIONALIZATION
- 3.1.6.3 SURFACE STABILIZATION
- 3.1.6.4 NANOPARTICLE SOLUBILIZATION
- 3.1.6.5 ENDOHEDRAL FUNCTIONALIZATION
- 3.2 Biomedical Application of CNTs.
- 3.2.1 Cancer Therapy
- 3.2.2 Infection Therapy
- 3.2.3 Gene Therapy
- 3.2.4 Tissue Regeneration
- 3.2.5 Neurodegeneration Therapy
- 3.2.6 Antioxidant
- 3.2.7 Neural Prosthetic Devices
- 4. LINEAR NANOPOLYMERS
- 4.1 Structure and Synthesis
- 4.1.1 Structure
- 4.1.2 Synthesis
- 4.1.3 Functionalization of Nanopolymers
- 4.2 Application of Polymer Nanoparticles
- 5. DENDRIMER NANOPARTICLES
- 5.1 Structure and Synthesis
- 5.1.1 Structure
- 5.1.2 Types of Commonly Used Dendrimers (Zimmerman et al., 2001)
- 5.1.2.1 POLY (AMIDOAMINE) DENDRIMERS (PAMAM)
- 5.1.2.2 TECTO DENDRIMERS
- 5.1.2.3 CHIRAL AND AMPHIPHILIC DENDRIMERS
- 5.1.2.4 POLYMERIC DENDRIMERS
- 5.1.2.5 DNA-BASED DENDRIMERS
- 5.1.3 Dendrimer Synthesis
- 5.1.4 Dendrimer Functionalization
- 5.2 Application of Dendrimers
- 5.2.1 Dendrimers as Therapeutic Agents
- 5.2.2 Dendrimers in Gene Therapy
- 5.2.3 In Vivo Imaging
- 5.2.4 Dendrimers as Drug Carriers
- 5.2.5 Unique Applications of DNA Dendrimers
- 6. CONCLUSIONS
- 7. APPENDICES
- Appendix 1: Calculation of the Number of Atoms and Percentage of Surface Atoms in a Nanoparticle
- Appendix 2: Van der Waals Forces
- Appendix 3: Zeta Potential
- References
- 3
- Physicochemical, Electronic, and Mechanical Properties of Nanoparticles
- 1. COMMON SIZE AND SURFACE-RELATED PROPERTIES
- 1.1 Surface Atoms
- 1.2 Size-Dependent Thermodynamic Properties
- 1.2.1 Surface Free Energy
- 1.2.2 Thermodynamic Indices
- 1.3 Electronic Properties
- 1.3.1 Classic Theory of Atomic Structure
- 1.3.2 Quantum Mechanical Theory
- 1.3.3 Unique Electronic Properties of Nanoparticles
- 1.3.3.1 JELLIUM MODEL OF ELECTRONIC STRUCTURE
- 1.3.3.2 ELECTRON CONFINEMENT AND THE DENSITY-OF-STATE
- 1.4 Optical Properties
- 1.5 Mechanical Properties
- 1.5.1 Surface Friction
- 1.5.1.1 BULK PARTICLES
- 1.5.1.2 NANOPARTICLES.
- 3.5 Rutherford Backscattering Spectrometry
- 3.6 Secondary-Ion Mass Spectrometry
- 4. SURFACE ANALYSIS
- 4.1 Auger Electron Spectroscopy
- 4.2 Atomic Force Microscopy
- 4.3 Brunauer-Emmett-Teller Surface Area Determination
- 4.4 Chemical Force Microscopy
- 4.5 Low-Energy Electron Diffraction
- 4.6 Low-Energy Ion-Scattering Spectroscopy
- 4.7 Small-Angle X-ray Scattering and Small-Angle Neutron Scattering
- 4.8 Ultraviolet-Visible Light Absorption Spectroscopy
- 4.9 Scanning Electron Microscopy
- 4.10 Energy-Dispersive X-ray Spectroscopy
- 5. PHYSIOCHEMICAL PROPERTIES
- 5.1 Atom Probe Tomography
- 5.2 Electron Probe Microanalysis
- 5.3 Electrospray Differential Mobility Analysis
- 5.4 Nuclear Magnetic Resonance
- 5.5 Nuclear Reaction Analysis
- 5.6 Raman Spectroscopy
- 5.7 Scanning Tunneling Microscopy
- 5.8 Scanning Transmission Electron Microscopy
- 5.9 Surface Plasmon Resonance
- 5.10 X-ray or Ultraviolet Photoelectron Spectroscopy
- 5.11 X-ray Diffraction
- 6. MAGNETIC PROPERTIES
- 6.1 Magnetic Susceptibility and Magnetic Moment
- 6.2 Magnetic Hysteresis
- 7. THERMODYNAMIC CHARACTERIZATION
- 7.1 Thermal Gravimetric Analysis
- 7.2 Differential Thermal Analysis
- 7.3 Differential Scanning Colorimeter
- 7.4 Nanocalorimetry
- 8. CONCLUSIONS
- References
- 5
- Principles of Nanotoxicology
- 1. HISTORICAL PERSPECTIVES
- 2. CLASSIC TOXICOLOGY
- 2.1 Definitions of Key Terms Used in Toxicology
- 2.2 Examples of Poisons
- 2.3 Acute or Chronic Exposure
- 2.3.1 Acute Exposure
- 2.3.1.1 MILD SYMPTOMS
- 2.3.1.2 MODERATE SYMPTOMS
- 2.3.1.3 SEVERE POISONING SYMPTOMS
- 2.3.2 Chronic Exposure
- 2.3.2.1 CHRONIC FATIGUE SYNDROME
- 2.3.2.2 NEUROLOGICAL PROBLEMS
- 2.3.2.3 ORGAN DAMAGE, ESPECIALLY LIVER AND KIDNEY DAMAGE
- 2.3.2.4 BIRTH DEFECTS
- 3. THE PRINCIPLES OF CLASSIC TOXICOLOGY AND NANOTOXICOLOGY.