Cargando…

Engineered nanoparticles : structure, properties and mechanisms of toxicity /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singh, A. K. (Ashok Kumar) (Materials scientist)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Dedication
  • ENGINEERED NANOPARTICLES: STRUCTURE, PROPERTIES AND MECHANISMS OF TOXICITY
  • Copyright
  • Contents
  • Foreword
  • 1
  • Introduction to Nanoparticles and Nanotoxicology
  • 1. INTRODUCTION TO NANOPARTICLES
  • 1.1 Historical Aspects
  • 1.2 Nanotechnology
  • 1.3 Atoms, Nanoparticles, and Bulk Materials
  • 1.4 Classification of Nanoparticles
  • 1.4.1 Dimension-Based Classification
  • 1.4.2 Natural or Anthropogenic Nanoparticles
  • 1.4.3 Classification of Nanoparticles According to Their Chemistry
  • 1.4.4 Isotropic and Anisotropic Nanoparticles
  • 1.4.5 Nanoparticle Classification Based on Application
  • 2. INTRODUCTION TO NANOTOXICOLOGY
  • 2.1 Dose-Response Relationship for Bulk Particles
  • 2.2 Is the Mass-Based Dose-Response Relevant to Nanotoxicology?
  • 2.3 Redefining the Dose
  • 2.4 Exposure of Humans and Animals to Nanoparticles
  • 2.5 Nanoparticles in the Environment
  • 2.6 Fate and Toxicity of Nanoparticles
  • 2.6.1 Necrosis
  • 2.6.2 Membrane Toxicity
  • 2.6.3 DNA Cleavage
  • 3. CONCLUSIONS
  • References
  • 2
  • Structure, Synthesis, and Application of Nanoparticles
  • 1. INTRODUCTION
  • 2. METAL, SEMICONDUCTOR, AND QUANTUM DOT NANOPARTICLES
  • 2.1 Structure and Synthesis
  • 2.1.1 Metal Nanoparticles
  • 2.1.1.1 STRUCTURE OF METAL NANOPARTICLES
  • 2.1.1.2 SYNTHESIS OF METAL NANOPARTICLES
  • 2.1.1.2.1 BOTTOM-UP METHODS
  • 2.1.1.2.2 TOP-DOWN NANOFABRICATION
  • 2.1.2 Paramagnetic Metal Nanoparticles
  • 2.1.2.1 STRUCTURE OF PARAMAGNETIC NANOPARTICLES
  • 2.1.2.2 SYNTHESIS OF PARAMAGNETIC NANOPARTICLES
  • 2.1.3 Porous and Hollow Metal Nanoparticles
  • 2.1.3.1 STRUCTURE OF POROUS AND HOLLOW METAL NANOPARTICLES
  • 2.1.3.2 SYNTHESIS OF POROUS AND HOLLOW METAL NANOPARTICLES
  • 2.1.3.2.1 POROUS SILICA
  • 2.1.3.2.2 HOLLOW SILICA NANOCAPSULES
  • 2.1.4 Semiconductor Nanocrystals and Quantum Dots.
  • 2.1.4.1 STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS
  • 2.1.4.2 STRUCTURE OF QUANTUM DOTS
  • 2.1.4.3 SYNTHESIS OF SEMICONDUCTOR NANOCRYSTALS AND QUANTUM DOTS
  • 2.1.4.3.1 TPOP/TOP PROCEDURE FOR NANOCRYSTALS
  • 2.1.4.3.2 THE CO-PRECIPITATION METHOD FOR NANOCRYSTALS
  • 2.1.4.3.3 SYNTHESIS OF QUANTUM DOTS
  • 2.1.5 Functionalization of Metal, Semiconductor, or Quantum Dot Nanoparticles
  • 2.1.5.1 FUNCTIONALIZATION FOR IMPROVED DISPERSION AND DISSOLUTION
  • 2.1.5.2 FUNCTIONALIZATION OF PEG FOR MEDICINAL/SCREENING APPLICATIONS
  • 2.1.5.3 ACID OR ENZYME CLEAVABLE LINKERS
  • 2.1.5.4 METAL NANOPARTICLES FUNCTIONALIZED WITH TUNABLE SWITCHES
  • 2.1.5.5 NONCOVALENT FUNCTIONALIZATION
  • 2.1.6 Nanoparticle Characterization
  • 2.2 Applications of Metal Nanoparticles
  • 2.2.1 Environmental Applications
  • 2.2.2 Biomedical Applications
  • 2.2.2.1 IMAGING
  • 2.2.3 Drug Delivery
  • 2.2.4 Metal Nanoparticle-Based Sensors
  • 3. CARBON NANOTUBES AND FULLERENES
  • 3.1 Structure and Synthesis
  • 3.1.1 Structure of CNTs and Fullerenes
  • 3.1.2 CNT Synthesis (Gore and Sane, 2011)
  • 3.1.2.1 ARC-DISCHARGE METHOD (JUNG ET AL., 2002
  • LAI ET AL., 2001
  • TAN AND MIENO, 2010
  • XING ET AL., 2007)
  • 3.1.2.2 LASER ABLATION METHOD (CHENA ET AL., 2005
  • GUO ET AL., 1995
  • THESS ET AL., 1996)
  • 3.1.2.3 CHEMICAL VAPOR DEPOSITION (DANAFAR ET AL., 2011)
  • 3.1.2.4 HYDROCARBON FLAMES (CHENG ET AL., 1998
  • EBBESEN AND AJAYAN, 1992)
  • 3.1.2.5 CNT SYNTHESIS USING TWISTED GRAPHENE RIBBONS (NANO-TEST TUBE CHEMISTRY)
  • 3.1.3 Synthesis of Fullerenes
  • 3.1.4 Carbon Nanotube Purification
  • 3.1.5 Structural Defects and Reactivity
  • 3.1.6 CNT Functionalization
  • 3.1.6.1 COVALENT FUNCTIONALIZATION
  • 3.1.6.2 NONCOVALENT FUNCTIONALIZATION
  • 3.1.6.3 SURFACE STABILIZATION
  • 3.1.6.4 NANOPARTICLE SOLUBILIZATION
  • 3.1.6.5 ENDOHEDRAL FUNCTIONALIZATION
  • 3.2 Biomedical Application of CNTs.
  • 3.2.1 Cancer Therapy
  • 3.2.2 Infection Therapy
  • 3.2.3 Gene Therapy
  • 3.2.4 Tissue Regeneration
  • 3.2.5 Neurodegeneration Therapy
  • 3.2.6 Antioxidant
  • 3.2.7 Neural Prosthetic Devices
  • 4. LINEAR NANOPOLYMERS
  • 4.1 Structure and Synthesis
  • 4.1.1 Structure
  • 4.1.2 Synthesis
  • 4.1.3 Functionalization of Nanopolymers
  • 4.2 Application of Polymer Nanoparticles
  • 5. DENDRIMER NANOPARTICLES
  • 5.1 Structure and Synthesis
  • 5.1.1 Structure
  • 5.1.2 Types of Commonly Used Dendrimers (Zimmerman et al., 2001)
  • 5.1.2.1 POLY (AMIDOAMINE) DENDRIMERS (PAMAM)
  • 5.1.2.2 TECTO DENDRIMERS
  • 5.1.2.3 CHIRAL AND AMPHIPHILIC DENDRIMERS
  • 5.1.2.4 POLYMERIC DENDRIMERS
  • 5.1.2.5 DNA-BASED DENDRIMERS
  • 5.1.3 Dendrimer Synthesis
  • 5.1.4 Dendrimer Functionalization
  • 5.2 Application of Dendrimers
  • 5.2.1 Dendrimers as Therapeutic Agents
  • 5.2.2 Dendrimers in Gene Therapy
  • 5.2.3 In Vivo Imaging
  • 5.2.4 Dendrimers as Drug Carriers
  • 5.2.5 Unique Applications of DNA Dendrimers
  • 6. CONCLUSIONS
  • 7. APPENDICES
  • Appendix 1: Calculation of the Number of Atoms and Percentage of Surface Atoms in a Nanoparticle
  • Appendix 2: Van der Waals Forces
  • Appendix 3: Zeta Potential
  • References
  • 3
  • Physicochemical, Electronic, and Mechanical Properties of Nanoparticles
  • 1. COMMON SIZE AND SURFACE-RELATED PROPERTIES
  • 1.1 Surface Atoms
  • 1.2 Size-Dependent Thermodynamic Properties
  • 1.2.1 Surface Free Energy
  • 1.2.2 Thermodynamic Indices
  • 1.3 Electronic Properties
  • 1.3.1 Classic Theory of Atomic Structure
  • 1.3.2 Quantum Mechanical Theory
  • 1.3.3 Unique Electronic Properties of Nanoparticles
  • 1.3.3.1 JELLIUM MODEL OF ELECTRONIC STRUCTURE
  • 1.3.3.2 ELECTRON CONFINEMENT AND THE DENSITY-OF-STATE
  • 1.4 Optical Properties
  • 1.5 Mechanical Properties
  • 1.5.1 Surface Friction
  • 1.5.1.1 BULK PARTICLES
  • 1.5.1.2 NANOPARTICLES.
  • 3.5 Rutherford Backscattering Spectrometry
  • 3.6 Secondary-Ion Mass Spectrometry
  • 4. SURFACE ANALYSIS
  • 4.1 Auger Electron Spectroscopy
  • 4.2 Atomic Force Microscopy
  • 4.3 Brunauer-Emmett-Teller Surface Area Determination
  • 4.4 Chemical Force Microscopy
  • 4.5 Low-Energy Electron Diffraction
  • 4.6 Low-Energy Ion-Scattering Spectroscopy
  • 4.7 Small-Angle X-ray Scattering and Small-Angle Neutron Scattering
  • 4.8 Ultraviolet-Visible Light Absorption Spectroscopy
  • 4.9 Scanning Electron Microscopy
  • 4.10 Energy-Dispersive X-ray Spectroscopy
  • 5. PHYSIOCHEMICAL PROPERTIES
  • 5.1 Atom Probe Tomography
  • 5.2 Electron Probe Microanalysis
  • 5.3 Electrospray Differential Mobility Analysis
  • 5.4 Nuclear Magnetic Resonance
  • 5.5 Nuclear Reaction Analysis
  • 5.6 Raman Spectroscopy
  • 5.7 Scanning Tunneling Microscopy
  • 5.8 Scanning Transmission Electron Microscopy
  • 5.9 Surface Plasmon Resonance
  • 5.10 X-ray or Ultraviolet Photoelectron Spectroscopy
  • 5.11 X-ray Diffraction
  • 6. MAGNETIC PROPERTIES
  • 6.1 Magnetic Susceptibility and Magnetic Moment
  • 6.2 Magnetic Hysteresis
  • 7. THERMODYNAMIC CHARACTERIZATION
  • 7.1 Thermal Gravimetric Analysis
  • 7.2 Differential Thermal Analysis
  • 7.3 Differential Scanning Colorimeter
  • 7.4 Nanocalorimetry
  • 8. CONCLUSIONS
  • References
  • 5
  • Principles of Nanotoxicology
  • 1. HISTORICAL PERSPECTIVES
  • 2. CLASSIC TOXICOLOGY
  • 2.1 Definitions of Key Terms Used in Toxicology
  • 2.2 Examples of Poisons
  • 2.3 Acute or Chronic Exposure
  • 2.3.1 Acute Exposure
  • 2.3.1.1 MILD SYMPTOMS
  • 2.3.1.2 MODERATE SYMPTOMS
  • 2.3.1.3 SEVERE POISONING SYMPTOMS
  • 2.3.2 Chronic Exposure
  • 2.3.2.1 CHRONIC FATIGUE SYNDROME
  • 2.3.2.2 NEUROLOGICAL PROBLEMS
  • 2.3.2.3 ORGAN DAMAGE, ESPECIALLY LIVER AND KIDNEY DAMAGE
  • 2.3.2.4 BIRTH DEFECTS
  • 3. THE PRINCIPLES OF CLASSIC TOXICOLOGY AND NANOTOXICOLOGY.