Cargando…

Engineered nanoparticles : structure, properties and mechanisms of toxicity /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singh, A. K. (Ashok Kumar) (Materials scientist)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn930489357
003 OCoLC
005 20231120112036.0
006 m o d
007 cr |n|||||||||
008 151127s2015 ne ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d YDXCP  |d EBLCP  |d N$T  |d CDX  |d OPELS  |d OCLCQ  |d IDB  |d UAB  |d OCLCQ  |d U3W  |d UUM  |d DEBBG  |d D6H  |d OCLCF  |d OCLCQ  |d ESEHU  |d AU@  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 931591091 
020 |a 9780128014929  |q (electronic bk.) 
020 |a 012801492X  |q (electronic bk.) 
020 |z 9780128014066 
020 |z 0128014067 
035 |a (OCoLC)930489357  |z (OCoLC)931591091 
050 4 |a RS201.N35 
072 7 |a MED  |x 071000  |2 bisacsh 
082 0 4 |a 615.6  |2 23 
100 1 |a Singh, A. K.  |q (Ashok Kumar)  |c (Materials scientist) 
245 1 0 |a Engineered nanoparticles :  |b structure, properties and mechanisms of toxicity /  |c Ashok K. Singh. 
260 |a Amsterdam :  |b Elsevier,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December 15, 2015). 
505 0 |6 880-01  |a Front Cover -- Dedication -- ENGINEERED NANOPARTICLES: STRUCTURE, PROPERTIES AND MECHANISMS OF TOXICITY -- Copyright -- Contents -- Foreword -- 1 -- Introduction to Nanoparticles and Nanotoxicology -- 1. INTRODUCTION TO NANOPARTICLES -- 1.1 Historical Aspects -- 1.2 Nanotechnology -- 1.3 Atoms, Nanoparticles, and Bulk Materials -- 1.4 Classification of Nanoparticles -- 1.4.1 Dimension-Based Classification -- 1.4.2 Natural or Anthropogenic Nanoparticles -- 1.4.3 Classification of Nanoparticles According to Their Chemistry -- 1.4.4 Isotropic and Anisotropic Nanoparticles -- 1.4.5 Nanoparticle Classification Based on Application -- 2. INTRODUCTION TO NANOTOXICOLOGY -- 2.1 Dose-Response Relationship for Bulk Particles -- 2.2 Is the Mass-Based Dose-Response Relevant to Nanotoxicology? -- 2.3 Redefining the Dose -- 2.4 Exposure of Humans and Animals to Nanoparticles -- 2.5 Nanoparticles in the Environment -- 2.6 Fate and Toxicity of Nanoparticles -- 2.6.1 Necrosis -- 2.6.2 Membrane Toxicity -- 2.6.3 DNA Cleavage -- 3. CONCLUSIONS -- References -- 2 -- Structure, Synthesis, and Application of Nanoparticles -- 1. INTRODUCTION -- 2. METAL, SEMICONDUCTOR, AND QUANTUM DOT NANOPARTICLES -- 2.1 Structure and Synthesis -- 2.1.1 Metal Nanoparticles -- 2.1.1.1 STRUCTURE OF METAL NANOPARTICLES -- 2.1.1.2 SYNTHESIS OF METAL NANOPARTICLES -- 2.1.1.2.1 BOTTOM-UP METHODS -- 2.1.1.2.2 TOP-DOWN NANOFABRICATION -- 2.1.2 Paramagnetic Metal Nanoparticles -- 2.1.2.1 STRUCTURE OF PARAMAGNETIC NANOPARTICLES -- 2.1.2.2 SYNTHESIS OF PARAMAGNETIC NANOPARTICLES -- 2.1.3 Porous and Hollow Metal Nanoparticles -- 2.1.3.1 STRUCTURE OF POROUS AND HOLLOW METAL NANOPARTICLES -- 2.1.3.2 SYNTHESIS OF POROUS AND HOLLOW METAL NANOPARTICLES -- 2.1.3.2.1 POROUS SILICA -- 2.1.3.2.2 HOLLOW SILICA NANOCAPSULES -- 2.1.4 Semiconductor Nanocrystals and Quantum Dots. 
505 8 |a 2.1.4.1 STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS -- 2.1.4.2 STRUCTURE OF QUANTUM DOTS -- 2.1.4.3 SYNTHESIS OF SEMICONDUCTOR NANOCRYSTALS AND QUANTUM DOTS -- 2.1.4.3.1 TPOP/TOP PROCEDURE FOR NANOCRYSTALS -- 2.1.4.3.2 THE CO-PRECIPITATION METHOD FOR NANOCRYSTALS -- 2.1.4.3.3 SYNTHESIS OF QUANTUM DOTS -- 2.1.5 Functionalization of Metal, Semiconductor, or Quantum Dot Nanoparticles -- 2.1.5.1 FUNCTIONALIZATION FOR IMPROVED DISPERSION AND DISSOLUTION -- 2.1.5.2 FUNCTIONALIZATION OF PEG FOR MEDICINAL/SCREENING APPLICATIONS -- 2.1.5.3 ACID OR ENZYME CLEAVABLE LINKERS -- 2.1.5.4 METAL NANOPARTICLES FUNCTIONALIZED WITH TUNABLE SWITCHES -- 2.1.5.5 NONCOVALENT FUNCTIONALIZATION -- 2.1.6 Nanoparticle Characterization -- 2.2 Applications of Metal Nanoparticles -- 2.2.1 Environmental Applications -- 2.2.2 Biomedical Applications -- 2.2.2.1 IMAGING -- 2.2.3 Drug Delivery -- 2.2.4 Metal Nanoparticle-Based Sensors -- 3. CARBON NANOTUBES AND FULLERENES -- 3.1 Structure and Synthesis -- 3.1.1 Structure of CNTs and Fullerenes -- 3.1.2 CNT Synthesis (Gore and Sane, 2011) -- 3.1.2.1 ARC-DISCHARGE METHOD (JUNG ET AL., 2002 -- LAI ET AL., 2001 -- TAN AND MIENO, 2010 -- XING ET AL., 2007) -- 3.1.2.2 LASER ABLATION METHOD (CHENA ET AL., 2005 -- GUO ET AL., 1995 -- THESS ET AL., 1996) -- 3.1.2.3 CHEMICAL VAPOR DEPOSITION (DANAFAR ET AL., 2011) -- 3.1.2.4 HYDROCARBON FLAMES (CHENG ET AL., 1998 -- EBBESEN AND AJAYAN, 1992) -- 3.1.2.5 CNT SYNTHESIS USING TWISTED GRAPHENE RIBBONS (NANO-TEST TUBE CHEMISTRY) -- 3.1.3 Synthesis of Fullerenes -- 3.1.4 Carbon Nanotube Purification -- 3.1.5 Structural Defects and Reactivity -- 3.1.6 CNT Functionalization -- 3.1.6.1 COVALENT FUNCTIONALIZATION -- 3.1.6.2 NONCOVALENT FUNCTIONALIZATION -- 3.1.6.3 SURFACE STABILIZATION -- 3.1.6.4 NANOPARTICLE SOLUBILIZATION -- 3.1.6.5 ENDOHEDRAL FUNCTIONALIZATION -- 3.2 Biomedical Application of CNTs. 
505 8 |a 3.2.1 Cancer Therapy -- 3.2.2 Infection Therapy -- 3.2.3 Gene Therapy -- 3.2.4 Tissue Regeneration -- 3.2.5 Neurodegeneration Therapy -- 3.2.6 Antioxidant -- 3.2.7 Neural Prosthetic Devices -- 4. LINEAR NANOPOLYMERS -- 4.1 Structure and Synthesis -- 4.1.1 Structure -- 4.1.2 Synthesis -- 4.1.3 Functionalization of Nanopolymers -- 4.2 Application of Polymer Nanoparticles -- 5. DENDRIMER NANOPARTICLES -- 5.1 Structure and Synthesis -- 5.1.1 Structure -- 5.1.2 Types of Commonly Used Dendrimers (Zimmerman et al., 2001) -- 5.1.2.1 POLY (AMIDOAMINE) DENDRIMERS (PAMAM) -- 5.1.2.2 TECTO DENDRIMERS -- 5.1.2.3 CHIRAL AND AMPHIPHILIC DENDRIMERS -- 5.1.2.4 POLYMERIC DENDRIMERS -- 5.1.2.5 DNA-BASED DENDRIMERS -- 5.1.3 Dendrimer Synthesis -- 5.1.4 Dendrimer Functionalization -- 5.2 Application of Dendrimers -- 5.2.1 Dendrimers as Therapeutic Agents -- 5.2.2 Dendrimers in Gene Therapy -- 5.2.3 In Vivo Imaging -- 5.2.4 Dendrimers as Drug Carriers -- 5.2.5 Unique Applications of DNA Dendrimers -- 6. CONCLUSIONS -- 7. APPENDICES -- Appendix 1: Calculation of the Number of Atoms and Percentage of Surface Atoms in a Nanoparticle -- Appendix 2: Van der Waals Forces -- Appendix 3: Zeta Potential -- References -- 3 -- Physicochemical, Electronic, and Mechanical Properties of Nanoparticles -- 1. COMMON SIZE AND SURFACE-RELATED PROPERTIES -- 1.1 Surface Atoms -- 1.2 Size-Dependent Thermodynamic Properties -- 1.2.1 Surface Free Energy -- 1.2.2 Thermodynamic Indices -- 1.3 Electronic Properties -- 1.3.1 Classic Theory of Atomic Structure -- 1.3.2 Quantum Mechanical Theory -- 1.3.3 Unique Electronic Properties of Nanoparticles -- 1.3.3.1 JELLIUM MODEL OF ELECTRONIC STRUCTURE -- 1.3.3.2 ELECTRON CONFINEMENT AND THE DENSITY-OF-STATE -- 1.4 Optical Properties -- 1.5 Mechanical Properties -- 1.5.1 Surface Friction -- 1.5.1.1 BULK PARTICLES -- 1.5.1.2 NANOPARTICLES. 
505 8 |a 3.5 Rutherford Backscattering Spectrometry -- 3.6 Secondary-Ion Mass Spectrometry -- 4. SURFACE ANALYSIS -- 4.1 Auger Electron Spectroscopy -- 4.2 Atomic Force Microscopy -- 4.3 Brunauer-Emmett-Teller Surface Area Determination -- 4.4 Chemical Force Microscopy -- 4.5 Low-Energy Electron Diffraction -- 4.6 Low-Energy Ion-Scattering Spectroscopy -- 4.7 Small-Angle X-ray Scattering and Small-Angle Neutron Scattering -- 4.8 Ultraviolet-Visible Light Absorption Spectroscopy -- 4.9 Scanning Electron Microscopy -- 4.10 Energy-Dispersive X-ray Spectroscopy -- 5. PHYSIOCHEMICAL PROPERTIES -- 5.1 Atom Probe Tomography -- 5.2 Electron Probe Microanalysis -- 5.3 Electrospray Differential Mobility Analysis -- 5.4 Nuclear Magnetic Resonance -- 5.5 Nuclear Reaction Analysis -- 5.6 Raman Spectroscopy -- 5.7 Scanning Tunneling Microscopy -- 5.8 Scanning Transmission Electron Microscopy -- 5.9 Surface Plasmon Resonance -- 5.10 X-ray or Ultraviolet Photoelectron Spectroscopy -- 5.11 X-ray Diffraction -- 6. MAGNETIC PROPERTIES -- 6.1 Magnetic Susceptibility and Magnetic Moment -- 6.2 Magnetic Hysteresis -- 7. THERMODYNAMIC CHARACTERIZATION -- 7.1 Thermal Gravimetric Analysis -- 7.2 Differential Thermal Analysis -- 7.3 Differential Scanning Colorimeter -- 7.4 Nanocalorimetry -- 8. CONCLUSIONS -- References -- 5 -- Principles of Nanotoxicology -- 1. HISTORICAL PERSPECTIVES -- 2. CLASSIC TOXICOLOGY -- 2.1 Definitions of Key Terms Used in Toxicology -- 2.2 Examples of Poisons -- 2.3 Acute or Chronic Exposure -- 2.3.1 Acute Exposure -- 2.3.1.1 MILD SYMPTOMS -- 2.3.1.2 MODERATE SYMPTOMS -- 2.3.1.3 SEVERE POISONING SYMPTOMS -- 2.3.2 Chronic Exposure -- 2.3.2.1 CHRONIC FATIGUE SYNDROME -- 2.3.2.2 NEUROLOGICAL PROBLEMS -- 2.3.2.3 ORGAN DAMAGE, ESPECIALLY LIVER AND KIDNEY DAMAGE -- 2.3.2.4 BIRTH DEFECTS -- 3. THE PRINCIPLES OF CLASSIC TOXICOLOGY AND NANOTOXICOLOGY. 
650 0 |a Nanoparticles. 
650 0 |a Nanoparticles  |x Toxicology. 
650 2 |a Nanoparticles  |0 (DNLM)D053758 
650 6 |a Nanoparticules.  |0 (CaQQLa)201-0262530 
650 6 |a Nanoparticules  |0 (CaQQLa)201-0262530  |x Toxicologie.  |0 (CaQQLa)201-0379898 
650 7 |a MEDICAL  |x Pharmacology.  |2 bisacsh 
650 7 |a Nanoparticles  |2 fast  |0 (OCoLC)fst01032624 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128014066  |z Texto completo 
880 8 |6 505-01/(S  |a 1.5.2 Tensile Properties -- 2. PHYSICOCHEMICAL PROPERTIES OF SPECIFIC NANOPARTICLES -- 2.1 Dendrimers -- 2.1.1 Intrinsic Viscosity (η) -- 2.1.2 The Dendrite Box Concept -- 2.1.3 Biomimicry -- 2.1.4 Solvent and pH-Dependent Folding of Dendrimers -- 2.1.5 Host-Guest Complex Formation -- 2.2 Properties of Carbon Nanotubes: Metals or Semiconductors -- 2.3 Magnetic Nanoparticles -- 2.3.1 Brief Overview of Magnetism -- 2.3.2 Comparison of Bulk Particles and Nanoparticles: The Concept of Critical Diameter -- 2.3.3 Effects of Size Reduction on Magnetic Properties -- 2.3.3.1 MAGNETIC MOMENT: THE SURFACE AND CORE ATOMS -- 2.3.3.2 DIRECT EFFECTS OF SIZE REDUCTION -- 3. CONCLUSIONS -- 4. APPENDICES -- Appendix 1: Unique Electronic Properties of Carbon Nanotubes -- A1.1 Classic and Quantum Mechanical Theories of Atomic Structure -- A1.2 Introduction to Carbon Nanotubes -- A1.3 Density of State and Electron Conduction -- Appendix 2: Introduction to Magnetism -- A2.1 Neutrons, Protons, and Nuclear Spin -- A2.2 Electron Spin, Orbital Moments, and Magnetism -- A2.3 Quantum Characterization of the Atomic Subparticles -- A2.4 Electrons and Magnetism -- A2.5 Types of Magnetism -- References -- 4 -- Experimental Methodologies for the Characterization of Nanoparticles -- 1. INTRODUCTION -- 2. NANOPARTICLE ENUMERATION, SIZE, AND SHAPE -- 2.1 Particle Counter -- 2.1.1 Conductivity Counters (Rosse and Loizeau, 2003 -- Beyer, 1987) -- 2.1.2 Condensation Particle Counters -- 2.2 Scanning Electron Microscopy -- 2.3 Laser Diffraction -- 2.4 Polarization Intensity Differential Scattering -- 2.5 Field-Flow Fractionation -- 3. CHEMICAL ANALYSIS OF NANOPARTICLES -- 3.1 Atom Probe Field-Ion Microscopy -- 3.2 Atomic Absorption Spectroscopy -- 3.3 Inductively Coupled Plasma Mass Spectrometry -- 3.4 Matrix-Assisted Laser Desorption Ionization TOF-MS.