Methods and applications of longitudinal data analysis /
Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, UK :
Academic Press is an imprint of Elsevier,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction
- Chapter 2. Traditional methods of longitudinal data analysis
- Chapter 3. Linear mixed-effects models
- Chapter 4. Restricted maximum likelihood and inference of random effects in linear mixed models
- Chapter 5
- Patterns of residual covariance structure
- Chapter 6. Residual and influence diagnostics
- Chapter 7. Special topics on linear mixed models
- Chapter 8. Generalized linear mixed models on nonlinear longitudinal data
- Chapter 9. Generalized estimating equations (GEEs) models
- Chapter 10. Mixed-effects regression model for binary longitudinal data
- Chapter 11. Mixed-effects multinomial logit model for nominal outcomes
- Chapter 12. Longitudinal transition models for categorical response data
- Chapter 13. Latent growth, latent growth mixture, and group-based models
- Chapter 14. Methods for handling missing data
- Appendix A. Orthogonal polynomials
- Appendix B. The delta method
- Appendix C. Quasi-likelihood functions and properties
- Appendix D. Model specification and SAS program for random coefficient multinomial logit model on health state among older Americans.