|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
SCIDIR_ocn898772113 |
003 |
OCoLC |
005 |
20231117033114.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141227s1981 nyu ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d IDEBK
|d N$T
|d OCLCE
|d OCLCF
|d OPELS
|d E7B
|d DEBSZ
|d OCLCQ
|d YDXCP
|d OCL
|d OCLCQ
|d MERUC
|d OCLCQ
|d UKAHL
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|
019 |
|
|
|a 610239536
|a 987749095
|a 1100946441
|
020 |
|
|
|a 9781483268040
|q (electronic bk.)
|
020 |
|
|
|a 1483268047
|q (electronic bk.)
|
020 |
|
|
|a 9780121985400
|
020 |
|
|
|a 0121985407
|
035 |
|
|
|a (OCoLC)898772113
|z (OCoLC)610239536
|z (OCoLC)987749095
|z (OCoLC)1100946441
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA274.2
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.2
|
084 |
|
|
|a 31.70
|2 bcl
|
100 |
1 |
|
|a Cs�org�o, M.
|
245 |
1 |
0 |
|a Strong Approximations in Probability and Statistics.
|
260 |
|
|
|a New York :
|b Academic Press ;
|a Budapest :
|b Akad�emiai Kiad�o,
|c �1981.
|
300 |
|
|
|a 1 online resource (287 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Probability and mathematical statistics
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Strong Approximations in Probability and Statistics.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
0 |
|
|a Front Cover; Strong Approximations in Probability and Statistics; Copyright Page; Table of Contents; Preface; Introduction; Chapter 1. Wiener and some Related Gaussian Processes; 1.0 On the notion of a Wiener process; 1.1 Definition and existence of a Wiener process; 1.2 How big are the increments of a Wiener process?; 1.3 The law of iterated logarithm for the Wiener process; 1.4 Brownian bridges; 1.5 The distributions of some functional of the Wiener and Brownian bridge processes; 1.6 The modulus of non-differentiability of the Wiener process
|
505 |
8 |
|
|a 2.1 A proof of Donsker's theorem with Skorohod's embedding scheme2.2 The strong invariance principle appears; 2.3 The stochastic Geyser problem as a lower limit to the strong invariance problem; 2.4 The longest runs of pure heads and the stochastic Geyser problem; 2.5 Improving the upper limit; 2.6 The best rates emerge; Supplementary remarks; Chapter 3. A Study of Partial Sums with the Help of Strong Approximation Methods; 3.0 Introduction; 3.1 How big are the increments of partial sums of I.I.D.R.V. when the moment generating function exists?
|
505 |
8 |
|
|a 3.2 How big are the increments of partial sums of I.I.D.R.V. when the moment generating function does not exist?3.3 How small are the increments of partial sums of I.I.D.R.V.?; 3.4 A summary; Supplementary remarks; Chapter 4. Strong Approximations of Empirical Processes by Gaussian Processes; 4.1 Some classical results; 4.2 Why should the empirical process behave like a Brownian bridge?; 4.3 The first strong approximations of the empirical process; 4.4 Best strong approximations of the empirical process; 4.5 Strong approximation of the quantile process; Supplementary remarks
|
505 |
8 |
|
|a Chapter 5. A Study of Empirical and Quantile Processes with the Help of Strong Approximation Methods5.0 Introduction; 5.1 The law of iterated logarithm for the empirical process; 5.2 The distance between the empirical and the quantile processes; 5.3 The law of iterated logarithm for the quantile process; 5.4 Asymptotic distribution results for some classical functionals of the empirical process; 5.5 Asymptotic distribution results for some classical functionals of the quantile process
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Stochastic approximation.
|
650 |
|
0 |
|a Invariants.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Mathematical statistics.
|
650 |
|
2 |
|a Probability
|0 (DNLM)D011336
|
650 |
|
6 |
|a Th�eorie de l'approximation.
|0 (CaQQLa)201-0021344
|
650 |
|
6 |
|a Probabilit�es.
|0 (CaQQLa)201-0011592
|
650 |
|
6 |
|a Statistique math�ematique.
|0 (CaQQLa)201-0002592
|
650 |
|
6 |
|a Approximation stochastique.
|0 (CaQQLa)201-0075368
|
650 |
|
6 |
|a Invariants.
|0 (CaQQLa)201-0005695
|
650 |
|
7 |
|a probability.
|2 aat
|0 (CStmoGRI)aat300055653
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Probabilities
|2 fast
|0 (OCoLC)fst01077737
|
650 |
|
7 |
|a Mathematical statistics
|2 fast
|0 (OCoLC)fst01012127
|
650 |
|
7 |
|a Stochastic approximation
|2 fast
|0 (OCoLC)fst01133501
|
650 |
|
7 |
|a Approximation theory
|2 fast
|0 (OCoLC)fst00811829
|
650 |
|
7 |
|a Invariants
|2 fast
|0 (OCoLC)fst00977982
|
650 |
1 |
7 |
|a Waarschijnlijkheid (statistiek)
|2 gtt
|
650 |
1 |
7 |
|a Statistiek.
|2 gtt
|
653 |
|
0 |
|a 11030
|a stochastic processes
|a 21030
|a approximation
|
653 |
|
0 |
|a Stochastic approximation
|
700 |
1 |
|
|a R�ev�esz, P.
|
700 |
1 |
|
|a Birnbaum, Z. W.
|
700 |
1 |
|
|a Lukacs, E.
|
776 |
0 |
8 |
|i Print version:
|a Cs�orgo, M.
|t Strong Approximations in Probability and Statistics.
|d Burlington : Elsevier Science, �2014
|z 9780121985400
|
830 |
|
0 |
|a Probability and mathematical statistics.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780121985400
|z Texto completo
|