MARC

LEADER 00000cam a2200000Mu 4500
001 SCIDIR_ocn898772113
003 OCoLC
005 20231117033114.0
006 m o d
007 cr cnu---unuuu
008 141227s1981 nyu ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d N$T  |d OCLCE  |d OCLCF  |d OPELS  |d E7B  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCL  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO 
019 |a 610239536  |a 987749095  |a 1100946441 
020 |a 9781483268040  |q (electronic bk.) 
020 |a 1483268047  |q (electronic bk.) 
020 |a 9780121985400 
020 |a 0121985407 
035 |a (OCoLC)898772113  |z (OCoLC)610239536  |z (OCoLC)987749095  |z (OCoLC)1100946441 
042 |a dlr 
050 4 |a QA274.2 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2 
084 |a 31.70  |2 bcl 
100 1 |a Cs�org�o, M. 
245 1 0 |a Strong Approximations in Probability and Statistics. 
260 |a New York :  |b Academic Press ;  |a Budapest :  |b Akad�emiai Kiad�o,  |c �1981. 
300 |a 1 online resource (287 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Probability and mathematical statistics 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
520 |a Strong Approximations in Probability and Statistics. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Strong Approximations in Probability and Statistics; Copyright Page; Table of Contents; Preface; Introduction; Chapter 1. Wiener and some Related Gaussian Processes; 1.0 On the notion of a Wiener process; 1.1 Definition and existence of a Wiener process; 1.2 How big are the increments of a Wiener process?; 1.3 The law of iterated logarithm for the Wiener process; 1.4 Brownian bridges; 1.5 The distributions of some functional of the Wiener and Brownian bridge processes; 1.6 The modulus of non-differentiability of the Wiener process 
505 8 |a 2.1 A proof of Donsker's theorem with Skorohod's embedding scheme2.2 The strong invariance principle appears; 2.3 The stochastic Geyser problem as a lower limit to the strong invariance problem; 2.4 The longest runs of pure heads and the stochastic Geyser problem; 2.5 Improving the upper limit; 2.6 The best rates emerge; Supplementary remarks; Chapter 3. A Study of Partial Sums with the Help of Strong Approximation Methods; 3.0 Introduction; 3.1 How big are the increments of partial sums of I.I.D.R.V. when the moment generating function exists? 
505 8 |a 3.2 How big are the increments of partial sums of I.I.D.R.V. when the moment generating function does not exist?3.3 How small are the increments of partial sums of I.I.D.R.V.?; 3.4 A summary; Supplementary remarks; Chapter 4. Strong Approximations of Empirical Processes by Gaussian Processes; 4.1 Some classical results; 4.2 Why should the empirical process behave like a Brownian bridge?; 4.3 The first strong approximations of the empirical process; 4.4 Best strong approximations of the empirical process; 4.5 Strong approximation of the quantile process; Supplementary remarks 
505 8 |a Chapter 5. A Study of Empirical and Quantile Processes with the Help of Strong Approximation Methods5.0 Introduction; 5.1 The law of iterated logarithm for the empirical process; 5.2 The distance between the empirical and the quantile processes; 5.3 The law of iterated logarithm for the quantile process; 5.4 Asymptotic distribution results for some classical functionals of the empirical process; 5.5 Asymptotic distribution results for some classical functionals of the quantile process 
650 0 |a Approximation theory. 
650 0 |a Stochastic approximation. 
650 0 |a Invariants. 
650 0 |a Probabilities. 
650 0 |a Mathematical statistics. 
650 2 |a Probability  |0 (DNLM)D011336 
650 6 |a Th�eorie de l'approximation.  |0 (CaQQLa)201-0021344 
650 6 |a Probabilit�es.  |0 (CaQQLa)201-0011592 
650 6 |a Statistique math�ematique.  |0 (CaQQLa)201-0002592 
650 6 |a Approximation stochastique.  |0 (CaQQLa)201-0075368 
650 6 |a Invariants.  |0 (CaQQLa)201-0005695 
650 7 |a probability.  |2 aat  |0 (CStmoGRI)aat300055653 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Probabilities  |2 fast  |0 (OCoLC)fst01077737 
650 7 |a Mathematical statistics  |2 fast  |0 (OCoLC)fst01012127 
650 7 |a Stochastic approximation  |2 fast  |0 (OCoLC)fst01133501 
650 7 |a Approximation theory  |2 fast  |0 (OCoLC)fst00811829 
650 7 |a Invariants  |2 fast  |0 (OCoLC)fst00977982 
650 1 7 |a Waarschijnlijkheid (statistiek)  |2 gtt 
650 1 7 |a Statistiek.  |2 gtt 
653 0 |a 11030  |a stochastic processes  |a 21030  |a approximation 
653 0 |a Stochastic approximation 
700 1 |a R�ev�esz, P. 
700 1 |a Birnbaum, Z. W. 
700 1 |a Lukacs, E. 
776 0 8 |i Print version:  |a Cs�orgo, M.  |t Strong Approximations in Probability and Statistics.  |d Burlington : Elsevier Science, �2014  |z 9780121985400 
830 0 |a Probability and mathematical statistics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780121985400  |z Texto completo