MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893978540
003 OCoLC
005 20231120111847.0
006 m o d
007 cr cnu---unuuu
008 141029s1989 enkaf ob 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCA  |d UAB  |d OCLCO  |d MERUC  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCA  |d OCLCQ  |d COM  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 896796221  |a 896847915 
020 |a 9781483265667  |q (electronic bk.) 
020 |a 1483265668  |q (electronic bk.) 
020 |z 9780124039858 
035 |a (OCoLC)893978540  |z (OCoLC)896796221  |z (OCoLC)896847915 
050 4 |a QH601  |b .I56 1989eb 
072 7 |a SCI  |x 056000  |2 bisacsh 
082 0 4 |a 571.6/4  |2 23 
245 0 0 |a Ion transport /  |c edited by David Keeling, Chris Benham. 
264 1 |a London :  |b Academic Press,  |c [1989] 
264 4 |c �1989 
300 |a 1 online resource (xxiv, 386 pages, 1 unnumbered pages leaf of plates) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a Front Cover; Ion Transport; Copyright Page; Contributors; Foreword; Table of Contents; Introduction; PART 1: P-type Cation Pumps; Chapter 1. Extracytosolic Functional Domains of the H+, K+-ATPase Complex; 1 Introduction; 2 Results; 3 Discussion; Acknowledgements; References; Chapter 2. The Mechanism of Cation Transport by the Na+, K+-ATPase; 1 Introduction; 2 The transport mechanism; 3 Cation occlusion; 4 Cation selectivity; 5 Trans effects of Na+; 6 Cation slippage fluxes; 7 Electrogenic potentials; 8 Effects of voltage on the pump; 9 The structure of the cation-binding sites. 
505 8 |a 10 Future directionsAcknowledgements; References; Chapter 3 .The Nucleotide-binding Site of the Plasma-membrane H+-ATPase of Neurospora crassa: A Comparison with other P-type ATPases; 1 Introduction; 2 Nucleotide binding; 3 Sequence comparisons; 4 Structure of the nucleotide-binding site; Acknowledgements; References; PART 2: Ion Channels and their Modulation; Chapter 4. Voltage-gated Sodium Channels since 1952; 1 Introduction; 2 Distribution; 3 Molecular Structure; 4 Gating; 5 Selectivity filter and pore; 6 Modulated receptors; 7 Conclusion; Acknowledgements; References. 
505 8 |a Chapter 5. Single Potassium Channels in Drosophila Nerve and Muscle1 Introduction; 2 Advantages of Drosophila as a system for the study of ion channels; 3 Tissue culture systems; 4 A1 channels; 5 A2 channels; 6 KD channels; 7 K1 channels; 8 Ko channels; 9 KST channel; 10 Shaker differential splicing does not explain the diversity of channel types; Acknowledgement; References; Chapter 6. Calcium Channels: Properties and Modulation; 1 Introduction; 2 Ca2+ channel selectivity; 3 Ca2+ channel gating; 4 Ca2+ channel modulation; Acknowledgements; References. 
505 8 |a Chapter 7. Calcium Channels in Mammalian Sympathetic Neurons and PC12 Cells1 Introduction; 2 Results and discussion; Acknowledgements; References; Chapter 8. Voltage-dependent Calcium Channels of Smooth Muscle Cells; 1 Introduction; 2 Inward current; 3 Conclusions; Acknowledgements; References; Chapter 9. Modulation of Calcium and other Channels by G Proteins: Implications for the Control of Synaptic Transmission; 1 Introduction; 2 Modulation of Ca2+ channels by G protein activation; 3 Evidence for G proteins coupling to K+ channels. 
650 0 |a Bacteria  |x Morphology  |v Congresses. 
650 0 |a Bacterial cell walls  |v Congresses. 
650 0 |a Cell membranes  |v Congresses. 
650 0 |a Ions  |v Congresses. 
650 0 |a Biological transport  |v Congresses. 
650 0 |a Ion exchange. 
650 2 |a Biological Transport  |x physiology  |0 (DNLM)D001692Q000502 
650 2 |a Ion Channels  |x physiology  |0 (DNLM)D007473Q000502 
650 2 |a Ion Exchange  |0 (DNLM)D007474 
650 6 |a Bact�eries  |0 (CaQQLa)201-0244234  |x Morphologie  |0 (CaQQLa)201-0244234  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Bact�eries  |0 (CaQQLa)201-0006807  |x Paroi cellulaire  |0 (CaQQLa)201-0006807  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Membrane cellulaire  |0 (CaQQLa)201-0005053  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Ions  |0 (CaQQLa)201-0004237  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Transport biologique  |0 (CaQQLa)201-0011115  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a �Echange d'ions.  |0 (CaQQLa)201-0017154 
650 7 |a SCIENCE  |x Life Sciences  |x Anatomy & Physiology.  |2 bisacsh 
650 7 |a Ion exchange  |2 fast  |0 (OCoLC)fst00978577 
650 7 |a Bacteria  |x Morphology  |2 fast  |0 (OCoLC)fst00825163 
650 7 |a Bacterial cell walls  |2 fast  |0 (OCoLC)fst00825190 
650 7 |a Biological transport  |2 fast  |0 (OCoLC)fst00832345 
650 7 |a Cell membranes  |2 fast  |0 (OCoLC)fst00850194 
650 7 |a Ions  |2 fast  |0 (OCoLC)fst00978705 
650 7 |a Ions.  |2 fmesh 
650 7 |a Transport biologique.  |2 fmesh 
650 7 |a Canaux ioniques.  |2 fmesh 
650 7 |a Membrane cellulaire.  |2 fmesh 
650 7 |a Ionentransport  |2 gnd  |0 (DE-588)4162351-4 
650 7 |a Kongress  |2 gnd  |0 (DE-588)4130470-6 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
655 7 |a Cambridge (1989)  |2 swd 
700 1 |a Keeling, David,  |e editor. 
700 1 |a Benham Chris,  |e editor. 
711 2 |a Smith, Kline & French Research Symposium on Ion Transport  |d (1989 :  |c Cambridge, England) 
776 0 8 |i Print version:  |t Ion transport  |z 0124039855  |w (OCoLC)27378501 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124039858  |z Texto completo 
880 8 |6 505-01/(S  |a 4 Role of G protein-coupled ion channels in the modulation of synaptic transmission5 Conclusion; References; Chapter 10. The Structure of the Skeletal Muscle Calcium Channel; 1 Introduction; 2 Structural composition of the purified skeletal muscle Ca2+ channel; 3 Phosphorylation of the purified CaCB-receptor; 4 Structure of the α1- and β-subunits of the skeletal muscle Ca2+ channel; 5 Identification of L-type Ca2+ channel proteins in other tissues; 6 Reconstitution of an L-type Ca2+ channel from the skeletal muscle CaCB-receptor; 7 Conclusions; Acknowledgements; References.