Cargando…

Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993 /

Machine Learning Proceedings 1993.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: International Conference on Machine Learning University of Massachusetts
Otros Autores: Utgoff, Paul E., 1951-
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : Morgan Kaufmann Pub., �1993.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja
  • ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano
  • Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley
  • Using Decision Trees to Improve Case-Based Learning / Claire Cardie
  • GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano
  • Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana
  • Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin
  • Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant
  • Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly
  • Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik.
  • Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost
  • Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler
  • Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski
  • Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman
  • SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski
  • Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt
  • Efficient Domain-Independent Experimentation / Yolanda Gil
  • Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong
  • Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird.
  • Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist
  • Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs
  • Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling
  • Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom
  • Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin
  • Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum
  • Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun
  • Combinatorial optimization in inductive concept learning / Dunja Mladenic
  • Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell
  • Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh.
  • Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott
  • Combining Instance-Based and Model-Based Learning / J.R. Quinlan
  • Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian
  • Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell
  • Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens
  • An SE-tree based Characterization of the Induction Problem / Ron Rymon
  • Density-Adaptive Learning and Forgetting / Marcos Salganicoff
  • Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer
  • Compiling Bayesian Networks into Neural Networks / Eddie Schwalb
  • A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz
  • ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz.
  • Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead
  • Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli
  • Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan
  • Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones.