Cargando…

Asymptotic approximations of integrals /

Asymptotic Approximations of Integrals.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wong, Roderick, 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1989.
Colección:Computer science and scientific computing.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892067736
003 OCoLC
005 20231120111754.0
006 m o d
007 cr cnu---unuuu
008 141003s1989 maua ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d OCLCA  |d E7B  |d EBLCP  |d NLGGC  |d DEBSZ  |d OCLCA  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 898772068  |a 1162071289 
020 |a 9781483220710  |q (electronic bk.) 
020 |a 1483220710  |q (electronic bk.) 
020 |z 0127625356 
020 |z 9780127625355 
035 |a (OCoLC)892067736  |z (OCoLC)898772068  |z (OCoLC)1162071289 
050 4 |a QA311  |b .W65 1989eb 
055 1 1 |a QA311 
055 1 0 |a QA311  |b W65 1989 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.43  |2 22 
084 |a *41-01  |2 msc 
084 |a 31.49  |2 bcl 
084 |a 41A60  |2 msc 
084 |a 44A15  |2 msc 
100 1 |a Wong, Roderick,  |d 1944- 
245 1 0 |a Asymptotic approximations of integrals /  |c R. Wong. 
264 1 |a Boston :  |b Academic Press,  |c �1989. 
300 |a 1 online resource (xiii, 544 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer science and scientific computing 
504 |a Includes bibliographical references (pages 517-532). 
500 |a Includes indexes. 
588 0 |a Print version record. 
505 0 |a Front Cover; Asymptotic Approximations of Integrals; Copyright Page; Dedication; Table of Contents; Preface; Chapter I. Fundamental Concepts of Asymptotics; 1. What Is Asymptotics?; 2. Asymptotic Expansions; 3. Generalized Asymptotic Expansions; 4. Integration by Parts; 5. Watson's Lemma; 6. The Euler-Maclaurin Summation Formula; Exercises; Supplementary Notes; Chapter II. Classical Procedures; 1. Laplace's Method; 2. Logarithmic Singularities; 3. The Principle of Stationary Phase; 4. Method of Steepest Descents; 5. Perron's Method; 6. Darboux's Method; 7. A Formula of Hayman; Exercises. 
505 8 |a Supplementary NotesChapter III. Mellin Transform Techniques; 1. Introduction; 2. Properties of Mellin Transforms; 3. Examples; 4. Work of Handelsman and Lew; 5. Remarks and Examples; 6. Explicit Error Terms; 7. A Double Integral; Exercises; Supplementary Notes; SHORT TABLE OF MELLIN TRANSFORMS; Chapter IV. The Summability Method; 1. Introduction; 2. A Fourier Integral; 3. Hankel Transform; 4. Hankel Transform (continued); 5. Oscillatory Kernels: General Case; 6. Some Quadrature Formulas; 7. Mellin-Barnes Type Integrals; Exercises; Supplementary Notes. 
505 8 |6 880-01  |a 4. Hilbert Transforms5. Laplace and Fourier Transforms Near the Origin; 6. Fractional Integrals; 7. The Method of Regularization; Exercises; Supplementary Notes; Chapter VII. Uniform AsymptoticExpansions; 1. Introduction; 2. Saddle Point near a Pole; 3. Saddle Point near an Endpoint; 4. Two Coalescing Saddle Points; 5. Laguerre Polynomials I; 6. Many Coalescing Saddle Points; 7. Laguerre Polynomials II; 8. LegendreFunction; Exercises; Supplementary Notes; Chapter VIII. Double Integrals; 1. Introduction; 2. Classification of Critical Points; 3. Local Extrema; 4. Saddle Points. 
505 8 |a 5. A Degenerate Case6. Boundary Stationary Points; 7. Critical Points of the Second Kind; 8. Critical Points of the Third Kind; 9. A Curve of Stationary Points; 10. Laplace's Approximation; 11. Boundary Extrema; Exercises; Supplementary Notes; Chapter IX. Higher DimensionalIntegrals; 1. Introduction; 2. Stationary Points; 3. Points of Tangential Contact; 4. Degenerate Stationary Point; 5. Laplace's Approximation inRn; 6. Multiple Fourier Transforms; Exercises; Supplementary Notes; Bibliography; Symbol Index; Author Index; Subject Index. 
520 |a Asymptotic Approximations of Integrals. 
546 |a English. 
650 0 |a Integrals. 
650 0 |a Approximation theory. 
650 0 |a Asymptotic expansions. 
650 6 |a Int�egrales.  |0 (CaQQLa)201-0014174 
650 6 |a Th�eorie de l'approximation.  |0 (CaQQLa)201-0021344 
650 6 |a D�eveloppements asymptotiques.  |0 (CaQQLa)201-0019870 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Approximation theory  |2 fast  |0 (OCoLC)fst00811829 
650 7 |a Asymptotic expansions  |2 fast  |0 (OCoLC)fst00819868 
650 7 |a Integrals  |2 fast  |0 (OCoLC)fst00975518 
650 7 |a Approximation  |2 gnd  |0 (DE-588)4002498-2 
650 7 |a Asymptotische Methode  |2 gnd  |0 (DE-588)4287476-2 
650 7 |a Integral  |2 gnd  |0 (DE-588)4131477-3 
650 7 |a Int�egrales.  |2 ram 
650 7 |a Approximation, th�eorie de l'.  |2 ram 
650 7 |a D�eveloppements asymptotiques.  |2 ram 
776 0 8 |i Print version:  |a Wong, R. (Roderick), 1944-  |t Asymptotic approximations of integrals  |z 0127625356  |w (DLC) 89000137  |w (OCoLC)19220965 
830 0 |a Computer science and scientific computing. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780127625355  |z Texto completo 
880 8 |6 505-01/(S  |a Chapter V. Elementary Theory of Distributions1. Introduction; 2. Test Functions and Distributions; 3. Support of Distributions; 4. Operations on Distributions; 5. Differentiation of Distributions; 6. Convolutions; 7. Regularization of Divergent Integrals; 8. Tempered Distributions; 9. Distributions of Several Variables; 10. The Distributionrλ; 11. Taylor and Laurent Series forrλ; 12. Fourier Transforms; 13. Surface Distributions; Exercises; Supplementary Notes; Chapter VI. The DistributionalApproach; 1. Introduction; 2. The Stieltjes Transform; 3. Stieltjes Transform: An Oscillatory Case.