|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892067736 |
003 |
OCoLC |
005 |
20231120111754.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1989 maua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d OCLCA
|d E7B
|d EBLCP
|d NLGGC
|d DEBSZ
|d OCLCA
|d OCLCQ
|d OCLCO
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 898772068
|a 1162071289
|
020 |
|
|
|a 9781483220710
|q (electronic bk.)
|
020 |
|
|
|a 1483220710
|q (electronic bk.)
|
020 |
|
|
|z 0127625356
|
020 |
|
|
|z 9780127625355
|
035 |
|
|
|a (OCoLC)892067736
|z (OCoLC)898772068
|z (OCoLC)1162071289
|
050 |
|
4 |
|a QA311
|b .W65 1989eb
|
055 |
1 |
1 |
|a QA311
|
055 |
1 |
0 |
|a QA311
|b W65 1989
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.43
|2 22
|
084 |
|
|
|a *41-01
|2 msc
|
084 |
|
|
|a 31.49
|2 bcl
|
084 |
|
|
|a 41A60
|2 msc
|
084 |
|
|
|a 44A15
|2 msc
|
100 |
1 |
|
|a Wong, Roderick,
|d 1944-
|
245 |
1 |
0 |
|a Asymptotic approximations of integrals /
|c R. Wong.
|
264 |
|
1 |
|a Boston :
|b Academic Press,
|c �1989.
|
300 |
|
|
|a 1 online resource (xiii, 544 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computer science and scientific computing
|
504 |
|
|
|a Includes bibliographical references (pages 517-532).
|
500 |
|
|
|a Includes indexes.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Asymptotic Approximations of Integrals; Copyright Page; Dedication; Table of Contents; Preface; Chapter I. Fundamental Concepts of Asymptotics; 1. What Is Asymptotics?; 2. Asymptotic Expansions; 3. Generalized Asymptotic Expansions; 4. Integration by Parts; 5. Watson's Lemma; 6. The Euler-Maclaurin Summation Formula; Exercises; Supplementary Notes; Chapter II. Classical Procedures; 1. Laplace's Method; 2. Logarithmic Singularities; 3. The Principle of Stationary Phase; 4. Method of Steepest Descents; 5. Perron's Method; 6. Darboux's Method; 7. A Formula of Hayman; Exercises.
|
505 |
8 |
|
|a Supplementary NotesChapter III. Mellin Transform Techniques; 1. Introduction; 2. Properties of Mellin Transforms; 3. Examples; 4. Work of Handelsman and Lew; 5. Remarks and Examples; 6. Explicit Error Terms; 7. A Double Integral; Exercises; Supplementary Notes; SHORT TABLE OF MELLIN TRANSFORMS; Chapter IV. The Summability Method; 1. Introduction; 2. A Fourier Integral; 3. Hankel Transform; 4. Hankel Transform (continued); 5. Oscillatory Kernels: General Case; 6. Some Quadrature Formulas; 7. Mellin-Barnes Type Integrals; Exercises; Supplementary Notes.
|
505 |
8 |
|
|6 880-01
|a 4. Hilbert Transforms5. Laplace and Fourier Transforms Near the Origin; 6. Fractional Integrals; 7. The Method of Regularization; Exercises; Supplementary Notes; Chapter VII. Uniform AsymptoticExpansions; 1. Introduction; 2. Saddle Point near a Pole; 3. Saddle Point near an Endpoint; 4. Two Coalescing Saddle Points; 5. Laguerre Polynomials I; 6. Many Coalescing Saddle Points; 7. Laguerre Polynomials II; 8. LegendreFunction; Exercises; Supplementary Notes; Chapter VIII. Double Integrals; 1. Introduction; 2. Classification of Critical Points; 3. Local Extrema; 4. Saddle Points.
|
505 |
8 |
|
|a 5. A Degenerate Case6. Boundary Stationary Points; 7. Critical Points of the Second Kind; 8. Critical Points of the Third Kind; 9. A Curve of Stationary Points; 10. Laplace's Approximation; 11. Boundary Extrema; Exercises; Supplementary Notes; Chapter IX. Higher DimensionalIntegrals; 1. Introduction; 2. Stationary Points; 3. Points of Tangential Contact; 4. Degenerate Stationary Point; 5. Laplace's Approximation inRn; 6. Multiple Fourier Transforms; Exercises; Supplementary Notes; Bibliography; Symbol Index; Author Index; Subject Index.
|
520 |
|
|
|a Asymptotic Approximations of Integrals.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Integrals.
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Asymptotic expansions.
|
650 |
|
6 |
|a Int�egrales.
|0 (CaQQLa)201-0014174
|
650 |
|
6 |
|a Th�eorie de l'approximation.
|0 (CaQQLa)201-0021344
|
650 |
|
6 |
|a D�eveloppements asymptotiques.
|0 (CaQQLa)201-0019870
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Approximation theory
|2 fast
|0 (OCoLC)fst00811829
|
650 |
|
7 |
|a Asymptotic expansions
|2 fast
|0 (OCoLC)fst00819868
|
650 |
|
7 |
|a Integrals
|2 fast
|0 (OCoLC)fst00975518
|
650 |
|
7 |
|a Approximation
|2 gnd
|0 (DE-588)4002498-2
|
650 |
|
7 |
|a Asymptotische Methode
|2 gnd
|0 (DE-588)4287476-2
|
650 |
|
7 |
|a Integral
|2 gnd
|0 (DE-588)4131477-3
|
650 |
|
7 |
|a Int�egrales.
|2 ram
|
650 |
|
7 |
|a Approximation, th�eorie de l'.
|2 ram
|
650 |
|
7 |
|a D�eveloppements asymptotiques.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Wong, R. (Roderick), 1944-
|t Asymptotic approximations of integrals
|z 0127625356
|w (DLC) 89000137
|w (OCoLC)19220965
|
830 |
|
0 |
|a Computer science and scientific computing.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780127625355
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a Chapter V. Elementary Theory of Distributions1. Introduction; 2. Test Functions and Distributions; 3. Support of Distributions; 4. Operations on Distributions; 5. Differentiation of Distributions; 6. Convolutions; 7. Regularization of Divergent Integrals; 8. Tempered Distributions; 9. Distributions of Several Variables; 10. The Distributionrλ; 11. Taylor and Laurent Series forrλ; 12. Fourier Transforms; 13. Surface Distributions; Exercises; Supplementary Notes; Chapter VI. The DistributionalApproach; 1. Introduction; 2. The Stieltjes Transform; 3. Stieltjes Transform: An Oscillatory Case.
|