|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892067082 |
003 |
OCoLC |
005 |
20231120111750.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1993 maua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d E7B
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|d MERUC
|d INARC
|d OCLCQ
|d UKAHL
|d BWN
|d OCLCQ
|d YDX
|d OCLCA
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898422360
|a 1035756469
|a 1124950115
|a 1162262201
|
020 |
|
|
|a 9781483276588
|q (electronic bk.)
|
020 |
|
|
|a 1483276589
|q (electronic bk.)
|
020 |
|
|
|z 0125984553
|
020 |
|
|
|z 9780125984553
|
020 |
|
|
|z 0125984561
|
020 |
|
|
|z 9780125984560
|
035 |
|
|
|a (OCoLC)892067082
|z (OCoLC)898422360
|z (OCoLC)1035756469
|z (OCoLC)1124950115
|z (OCoLC)1162262201
|
050 |
|
4 |
|a QA273
|b .R84 1993eb
|
060 |
|
4 |
|a QA 273 R826i 1993
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.2
|2 22
|
084 |
|
|
|a 31.70
|2 bcl
|
084 |
|
|
|a *60-01
|2 msc
|
084 |
|
|
|a 17,1
|2 ssgn
|
088 |
|
|
|a 93009266
|
100 |
1 |
|
|a Ross, Sheldon M.
|
245 |
1 |
0 |
|a Introduction to probability models /
|c Sheldon M. Ross.
|
250 |
|
|
|a Fifth edition.
|
264 |
|
1 |
|a Boston :
|b Academic Press,
|c [1993]
|
264 |
|
4 |
|c �1993
|
300 |
|
|
|a 1 online resource (xi, 556 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Introduction to Probability Models; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction to Probability Theory; 1.1. Introduction; 1.2. Sample Space and Events; 1.3. Probabilities Defined on Events; 1.4. Conditional Probabilities; 1.5. Independent Events; 1.6. Bayes' Formula; Exercises; References; Chapter 2. Random Variables; 2.1. Random Variables; 2.2. Discrete Random Variables; 2.3. Continuous Random Variables; 2.4. Expectation of a Random Variable; 2.5. Jointly Distributed Random Variables; 2.6. Moment Generating Functions; 2.7. Limit Theorems.
|
505 |
8 |
|
|a 2.8. Stochastic ProcessesExercises; References; Chapter 3. Conditional Probability and Conditional Expectation; 3.1. Introduction; 3.2. The Discrete Case; 3.3. The Continuous Case; 3.4. Computing Expectations by Conditioning; 3.5. Computing Probabilities by Conditioning; 3.6. Some Applications; Exercises; Chapter 4. Markov Chains; 4.1. Introduction; 4.2. Chapman-Kolmogorov Equations; 4.3. Classification of States; 4.4. Limiting Probabilities; 4.5. Some Applications; 4.6. Branching Processes; 4.7. Time Reversible Markov Chains; 4.8. Markov Decision Processes; Exercises; References.
|
505 |
8 |
|
|a Chapter 5. The Exponential Distribution and the Poisson Process5.1. Introduction; 5.2. The Exponential Distribution; 5.3. The Poisson Process; 5.4. Generalizations of the Poisson Process; Exercises; References; Chapter 6. Continuous-Time Markov Chains; 6.1. Introduction; 6.2. Continuous-Time Markov Chains; 6.3. Birth and Death Processes; 6.4. The Kolmogorov Differential Equations; 6.5. Limiting Probabilities; 6.6. Time Reversibility; 6.7. Uniformization; 6.8. Computing the Transition Probabilities; Exercises; References; Chapter 7. Renewal Theory and Its Applications; 7.1. Introduction.
|
505 |
8 |
|
|a 7.2. Distribution of N(t)7.3. Limit Theorems and Their Applications; 7.4. Renewal Reward Processes; 7.5. Regenerative Processes; 7.6. Semi-Markov Processes; 7.7. The Inspection Paradox; 7.8. Computing the Renewal Function; Exercises; References; Chapter 8. Queueing Theory; 8.1. Introduction; 8.2. Preliminaries; 8.3. Exponential Models; 8.4. Network of Queues; 8.5. The System M/G/1; 8.6. Variations on the M/G/1; 8.7. The Model G/M/1; 8.8. Multiserver Queues; Exercises; References; Chapter 9. Reliability Theory; 9.1. Introduction; 9.2. Structure Functions.
|
505 |
8 |
|
|a 9.3. Reliability of Systems of Independent Components9.4. Bounds on the Reliability Function; 9.5. System Life as a Function of Component Lives; 9.6. Expected System Lifetime; 9.7. Systems with Repair; Exercises; References; Chapter 10. Brownian Motion and Stationary Processes; 10.1. Brownian Motion; 10.2. Hitting Times, Maximum Variable, and the Gambler's Ruin Problem; 10.3. Variations on Brownian Motion; 10.4. Pricing Stock Options; 10.5. White Noise; 10.6. Gaussian Processes; 10.7. Stationary and Weakly Stationary Processes; 10.8. Harmonic Analysis of Weakly Stationary Processes; Exercises.
|
520 |
|
|
|a Introduction to Probability Models.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
2 |
|a Probability
|0 (DNLM)D011336
|
650 |
|
2 |
|a Models, Statistical
|0 (DNLM)D015233
|
650 |
|
6 |
|a Probabilit�es.
|0 (CaQQLa)201-0011592
|
650 |
|
7 |
|a probability.
|2 aat
|0 (CStmoGRI)aat300055653
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Probabilities
|2 fast
|0 (OCoLC)fst01077737
|
650 |
1 |
7 |
|a Waarschijnlijkheidstheorie.
|2 gtt
|
650 |
|
7 |
|a Probabilit�es.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Ross, Sheldon M.
|t Introduction to probability models.
|b Fifth edition
|z 0125984553
|w (DLC) 93009266
|w (OCoLC)27381657
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780125984553
|z Texto completo
|