Cargando…

Introduction to probability models /

Introduction to Probability Models.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ross, Sheldon M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, [1993]
Edición:Fifth edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892067082
003 OCoLC
005 20231120111750.0
006 m o d
007 cr cnu---unuuu
008 141003s1993 maua ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d INARC  |d OCLCQ  |d UKAHL  |d BWN  |d OCLCQ  |d YDX  |d OCLCA  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898422360  |a 1035756469  |a 1124950115  |a 1162262201 
020 |a 9781483276588  |q (electronic bk.) 
020 |a 1483276589  |q (electronic bk.) 
020 |z 0125984553 
020 |z 9780125984553 
020 |z 0125984561 
020 |z 9780125984560 
035 |a (OCoLC)892067082  |z (OCoLC)898422360  |z (OCoLC)1035756469  |z (OCoLC)1124950115  |z (OCoLC)1162262201 
050 4 |a QA273  |b .R84 1993eb 
060 4 |a QA 273 R826i 1993 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 22 
084 |a 31.70  |2 bcl 
084 |a *60-01  |2 msc 
084 |a 17,1  |2 ssgn 
088 |a 93009266 
100 1 |a Ross, Sheldon M. 
245 1 0 |a Introduction to probability models /  |c Sheldon M. Ross. 
250 |a Fifth edition. 
264 1 |a Boston :  |b Academic Press,  |c [1993] 
264 4 |c �1993 
300 |a 1 online resource (xi, 556 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Introduction to Probability Models; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction to Probability Theory; 1.1. Introduction; 1.2. Sample Space and Events; 1.3. Probabilities Defined on Events; 1.4. Conditional Probabilities; 1.5. Independent Events; 1.6. Bayes' Formula; Exercises; References; Chapter 2. Random Variables; 2.1. Random Variables; 2.2. Discrete Random Variables; 2.3. Continuous Random Variables; 2.4. Expectation of a Random Variable; 2.5. Jointly Distributed Random Variables; 2.6. Moment Generating Functions; 2.7. Limit Theorems. 
505 8 |a 2.8. Stochastic ProcessesExercises; References; Chapter 3. Conditional Probability and Conditional Expectation; 3.1. Introduction; 3.2. The Discrete Case; 3.3. The Continuous Case; 3.4. Computing Expectations by Conditioning; 3.5. Computing Probabilities by Conditioning; 3.6. Some Applications; Exercises; Chapter 4. Markov Chains; 4.1. Introduction; 4.2. Chapman-Kolmogorov Equations; 4.3. Classification of States; 4.4. Limiting Probabilities; 4.5. Some Applications; 4.6. Branching Processes; 4.7. Time Reversible Markov Chains; 4.8. Markov Decision Processes; Exercises; References. 
505 8 |a Chapter 5. The Exponential Distribution and the Poisson Process5.1. Introduction; 5.2. The Exponential Distribution; 5.3. The Poisson Process; 5.4. Generalizations of the Poisson Process; Exercises; References; Chapter 6. Continuous-Time Markov Chains; 6.1. Introduction; 6.2. Continuous-Time Markov Chains; 6.3. Birth and Death Processes; 6.4. The Kolmogorov Differential Equations; 6.5. Limiting Probabilities; 6.6. Time Reversibility; 6.7. Uniformization; 6.8. Computing the Transition Probabilities; Exercises; References; Chapter 7. Renewal Theory and Its Applications; 7.1. Introduction. 
505 8 |a 7.2. Distribution of N(t)7.3. Limit Theorems and Their Applications; 7.4. Renewal Reward Processes; 7.5. Regenerative Processes; 7.6. Semi-Markov Processes; 7.7. The Inspection Paradox; 7.8. Computing the Renewal Function; Exercises; References; Chapter 8. Queueing Theory; 8.1. Introduction; 8.2. Preliminaries; 8.3. Exponential Models; 8.4. Network of Queues; 8.5. The System M/G/1; 8.6. Variations on the M/G/1; 8.7. The Model G/M/1; 8.8. Multiserver Queues; Exercises; References; Chapter 9. Reliability Theory; 9.1. Introduction; 9.2. Structure Functions. 
505 8 |a 9.3. Reliability of Systems of Independent Components9.4. Bounds on the Reliability Function; 9.5. System Life as a Function of Component Lives; 9.6. Expected System Lifetime; 9.7. Systems with Repair; Exercises; References; Chapter 10. Brownian Motion and Stationary Processes; 10.1. Brownian Motion; 10.2. Hitting Times, Maximum Variable, and the Gambler's Ruin Problem; 10.3. Variations on Brownian Motion; 10.4. Pricing Stock Options; 10.5. White Noise; 10.6. Gaussian Processes; 10.7. Stationary and Weakly Stationary Processes; 10.8. Harmonic Analysis of Weakly Stationary Processes; Exercises. 
520 |a Introduction to Probability Models. 
546 |a English. 
650 0 |a Probabilities. 
650 2 |a Probability  |0 (DNLM)D011336 
650 2 |a Models, Statistical  |0 (DNLM)D015233 
650 6 |a Probabilit�es.  |0 (CaQQLa)201-0011592 
650 7 |a probability.  |2 aat  |0 (CStmoGRI)aat300055653 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Probabilities  |2 fast  |0 (OCoLC)fst01077737 
650 1 7 |a Waarschijnlijkheidstheorie.  |2 gtt 
650 7 |a Probabilit�es.  |2 ram 
776 0 8 |i Print version:  |a Ross, Sheldon M.  |t Introduction to probability models.  |b Fifth edition  |z 0125984553  |w (DLC) 93009266  |w (OCoLC)27381657 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125984553  |z Texto completo