|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892066816 |
003 |
OCoLC |
005 |
20231120111747.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1982 nyua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d E7B
|d EBLCP
|d IDEBK
|d HEBIS
|d DEBSZ
|d DEBBG
|d YDXCP
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCE
|d UKAHL
|d OCLCQ
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d S2H
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 898771739
|a 1083537351
|a 1100861486
|
020 |
|
|
|a 9781483260471
|q (electronic bk.)
|
020 |
|
|
|a 148326047X
|q (electronic bk.)
|
020 |
|
|
|z 0120934809
|
020 |
|
|
|z 9780120934805
|
035 |
|
|
|a (OCoLC)892066816
|z (OCoLC)898771739
|z (OCoLC)1083537351
|z (OCoLC)1100861486
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA402.5
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 22
|
084 |
|
|
|a 31.80
|2 bcl
|
084 |
|
|
|a 31.43
|2 bcl
|
084 |
|
|
|a 85.03
|2 bcl
|
084 |
|
|
|a PB 44
|2 blsrissc
|
084 |
|
|
|a SK 870
|2 rvk
|
084 |
|
|
|a MAT 910f
|2 stub
|
100 |
1 |
|
|a Bertsekas, Dimitri P.
|
245 |
1 |
0 |
|a Constrained optimization and Lagrange multiplier methods /
|c Dimitri P. Bertsekas.
|
264 |
|
1 |
|a New York :
|b Academic Press,
|c 1982.
|
300 |
|
|
|a 1 online resource (xiii, 395 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computer science and applied mathematics
|
504 |
|
|
|a Includes bibliographical references (pages 383-392) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Constrained Optimization and Lagrange Multiplier Methods; Copyright Page; Dedication; Table of Contents; Preface; Chapter 1. Introduction; 1.1 General Remarks; 1.2 Notation and Mathematical Background; 1.3 Unconstrained Minimization; 1.4 Constrained Minimization; 1.5 Algorithms for Minimization Subject to Simple Constraints; 1.6 Notes and Sources; Chapter 2. The Method of Multipliers for Equality Constrained Problems; 2.1 The Quadratic Penalty Function Method; 2.2 The Original Method of Multipliers; 2.3 Duality Framework for the Method of Multipliers.
|
505 |
8 |
|
|a 2.4 Multiplier Methods with Partial Elimination of Constraints2.5 Asymptotically Exact Minimization in Methods of Multipliers; 2.6 Primal-Dual Methods Not Utilizing a Penalty Function; 2.7 Notes and Sources; Chapter 3. The Method of Multipliers for Inequality Constrained and Nondifferentiable Optimization Problems; 3.1 One-Sided Inequality Constraints; 3.2 Two-Sided Inequality Constraints; 3.3 Approximation Procedures for Nondifferentiable and Ill-Conditioned Optimization Problems; 3.4 Notes and Sources; Chapter 4. Exact Penalty Methods and Lagrangian Methods.
|
505 |
8 |
|
|a 4.1 Nondifferentiable Exact Penalty Functions4.2 Linearization Algorithms Based on Nondifferentiable Exact Penalty Functions; 4.3 Differentiable Exact Penalty Functions; 4.4 Lagrangian Methods-Local Convergence; 4.5 Lagrangian Methods-Global Convergence; 4.6 Notes and Sources; Chapter 5. Nonquadratic Penalty Functions -- Convex Programming; 5.1 Classes of Penalty Functions and Corresponding Methods of Multipliers; 5.2 Convex Programming and Duality; 5.3 Convergence Analysis of Multiplier Methods; 5.4 Rate of Convergence Analysis; 5.5 Conditions for Penalty Methods to Be Exact.
|
505 |
8 |
|
|a 5.6 Large Scale Separable Integer Programming Problems and the Exponential Method of Multipliers5.7 Notes and Sources; References; Index.
|
520 |
|
|
|a Constrained Optimization and Lagrange Multiplier Methods.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Multipliers (Mathematical analysis)
|
650 |
|
6 |
|a Optimisation math�ematique.
|0 (CaQQLa)201-0007680
|
650 |
|
6 |
|a Multiplicateurs (Analyse math�ematique)
|0 (CaQQLa)201-0046651
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical optimization.
|2 fast
|0 (OCoLC)fst01012099
|
650 |
|
7 |
|a Multipliers (Mathematical analysis)
|2 fast
|0 (OCoLC)fst01029066
|
650 |
|
7 |
|a Optimierung
|2 gnd
|0 (DE-588)4043664-0
|
650 |
|
7 |
|a Mathematik
|2 gnd
|0 (DE-588)4037944-9
|
650 |
|
7 |
|a Optimisation math�ematique.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Bertsekas, Dimitri P.
|t Constrained optimization and Lagrange multiplier methods
|z 0120934809
|w (DLC) 81017612
|w (OCoLC)7924930
|
830 |
|
0 |
|a Computer science and applied mathematics.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780120934805
|z Texto completo
|