Cargando…

Phase Equilibrium Engineering.

Traditionally the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brignole, Esteban Alberto
Otros Autores: Pereda, Selva
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Elsevier Science, 2013.
Colección:Supercritical fluid science and technology.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Phase EquilibriumEngineering; Copyright; Contents; Foreword; Preface; Chapter 1: Phase Equilibrium and Process Development; 1.1. The World of Phase Equilibria in Chemical Processes; 1.2. Thermodynamic Modeling in Process Development; 1.3. Definition of Phase Equilibrium Engineering; 1.4. Phase Scenarios in Separation, Materials, and Chemical Processes; 1.5. The Phase Design and the Phase Engineering Tools; References; Chapter 2: Intermolecular Forces, Classes of Molecules, and Separation Processes; 2.1. Intermolecular Forces; 2.1.1. Dispersive Interactions; 2.1.2. Polar Forces.
  • 2.1.3. Electrostatic Interactions2.1.4. Induced Dipole Interactions; 2.1.5. Association Interactions; 2.1.6. Repulsive Forces; 2.2. Classification of Molecules; 2.3. Separation Process Technology and Classes of Mixtures; 2.3.1. Families of Separation Problems; References; Chapter 3: Phase Equilibrium Diagrams; 3.1. Gibbs Criteria for Phase Equilibrium: The Phase Rule; 3.2. The Phase Regions of Pure Components; 3.3. Classification of Binary Fluid-Phase Behavior Diagrams; 3.3.1. Effect of Molecular Properties on Phase Behavior; 3.3.2. General Classification of Binary Phase Behavior.
  • 3.4. Classification of Ternary Fluid-Phase Behavior Diagrams3.5. Phase Diagrams for Multicomponent Systems; References; Chapter 4: Physical Properties and Thermodynamic Models; 4.1. Thermodynamic Modeling and Simulation; 4.2. Physical Properties of Pure Compounds; 4.3. The Compressibility Factor of Gases; 4.4. The Virial EOS; 4.5. Corresponding State Correlations; 4.6. Prediction of Phase Equilibria; 4.7. Predictive Models; 4.7.1. The Raoult and Dalton Laws; 4.7.2. Flory-Huggins Model for Athermal Solutions; 4.7.3. Scatchard and Hildebrand Model for Regular Solutions.
  • 4.7.4. Activity Coefficient Predictions using Flory and Regular Solution Models4.8. Semiempirical Models; 4.8.1. Local Compositions; 4.8.2. Equations of State; 4.8.3. Huron and Vidal Mixing Rules; 4.9. Selection of Thermodynamic Models; 4.9.1. Thermodynamic Modeling, Classes of Molecules, and Process Technology; 4.10. Problems; Appendix4A; 4A.1. NRTL Model; Appendix4B; 4B.1. The Group Contribution EOSs: GC-EOS and GCA-EOS; 4B.1.1. GC-EOS Extension to Mixtures; 4B.1.2. Group Contribution Form of the GC-EOS; 4B.1.3. The GC-EOS Parameters; 4B.2. The GCA-EOS Model; References.
  • Chapter 5: A General Approach to Phase Diagrams for Binary Systems5.1. Introduction and Scope; 5.2. A Case That Required Special Analysis and New Tools; 5.3. Some Problems and Solutions Regarding the Automated Calculation of Phase Diagrams; 5.3.1. Automated Identification of the Predicted Type of Binary Fluid Phase Behavior; 5.3.2. Calculation of Lines and Hyper-Lines with Local Minima and Local Maxima in Different Variables; 5.3.3. Generalized Construction of Restricted Diagrams by Sections; 5.4. Different Projections of ULPEDs; 5.5. Restricted Phase Diagrams (Beyond the Typical Cases).