Cargando…

Markov processes : an introduction for physical scientists /

Markov process theory is basically an extension of ordinary calculus to accommodate functions whos time evolutions are not entirely deterministic. It is a subject that is becoming increasingly important for many fields of science. This book develops the single-variable theory of both continuous and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gillespie, Daniel T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1992.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn838123978
003 OCoLC
005 20231117044846.0
006 m o d
007 cr cnu---unuuu
008 130411s1992 maua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d E7B  |d OCLCF  |d YDXCP  |d IDEBK  |d EBLCP  |d MERUC  |d MHW  |d UKDOC  |d OCLCQ  |d NLE  |d OCLCQ  |d UKMGB  |d OCLCQ  |d LEAUB  |d UKBTH  |d OCLCO  |d YDX  |d OCLCQ  |d VLY  |d LUN  |d EYM  |d OCLCO  |d OCLCQ  |d NLW  |d OCLCO  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 0122839552  |2 Uk 
016 7 |a 017593119  |2 Uk 
019 |a 842886542  |a 843200609  |a 850149327  |a 1113495052  |a 1119463620  |a 1159658826  |a 1162418694  |a 1164121388 
020 |a 9780080918372  |q (electronic bk.) 
020 |a 0080918379  |q (electronic bk.) 
020 |a 1299536166  |q (ebk) 
020 |a 9781299536166  |q (ebk) 
020 |z 0122839552 
020 |z 9780122839559 
035 |a (OCoLC)838123978  |z (OCoLC)842886542  |z (OCoLC)843200609  |z (OCoLC)850149327  |z (OCoLC)1113495052  |z (OCoLC)1119463620  |z (OCoLC)1159658826  |z (OCoLC)1162418694  |z (OCoLC)1164121388 
050 4 |a QA274.7  |b .G55 1992eb 
072 7 |a MAT  |x 029040  |2 bisacsh 
082 0 4 |a 519.2/33  |2 22 
084 |a 31.70  |2 bcl 
084 |a PF 38  |2 blsrissc 
084 |a *60-01  |2 msc 
084 |a 60J99  |2 msc 
084 |a 82-01  |2 msc 
084 |a SK 820  |2 rvk 
084 |a MAT 607f  |2 stub 
100 1 |a Gillespie, Daniel T. 
245 1 0 |a Markov processes :  |b an introduction for physical scientists /  |c Daniel T. Gillespie. 
260 |a Boston :  |b Academic Press,  |c �1992. 
300 |a 1 online resource (xxi, 565 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (page xxi) and index. 
520 |a Markov process theory is basically an extension of ordinary calculus to accommodate functions whos time evolutions are not entirely deterministic. It is a subject that is becoming increasingly important for many fields of science. This book develops the single-variable theory of both continuous and jump Markov processes in a way that should appeal especially to physicists and chemists at the senior and graduate level. Key Features * A self-contained, prgamatic exposition of the needed elements of random variable theory * Logically integrated derviations of the Chapman-Kolmogorov equation, the Kramers-Moyal equations, the Fokker-Planck equations, the Langevin equation, the master equations, and the moment equations * Detailed exposition of Monte Carlo simulation methods, with plots of many numerical examples * Clear treatments of first passages, first exits, and stable state fluctuations and transitions * Carefully drawn applications to Brownian motion, molecular diffusion, and chemical kinetics. 
588 0 |a Print version record. 
505 0 |a Front Cover; Markov Processes: An Introduction for Pshysical Science; Copyright Page; Table of Contents; Preface; Acknowledgments; Bibliography; Chapter 1. Random Variable Theory; 1.1 The laws of probability; 1.2 Definition of a random variable; 1.3 Averages and moments; 1.4 Four important random variables; 1.5 Joint random variables; 1.6 Some useful theorems; 1.7 Integer random variables; 1.8 Random number generating procedures; Chapter 2. General Features of a Markov Process; 2.1 The Markov state density function; 2.2 The Chapman-Kolmogorov equation. 
505 8 |a 2.3 Functions of state and their averages2.4 The Markov propagator; 2.5 The Kramers-Moyal equations; 2.6 The time-integral of a Markov process; 2.7 Time-evolution of the moments; 2.8 Homogeneity; 2.9 The Monte Carlo approach; Chapter 3. Continuous Markov Processes; 3.1 The continuous propagator and its characterizing functions; 3.2 Time-evolution equations; 3.3 Three important continuous Markov processes; 3.4 The Lange vin equation; 3.5 Stable processes; 3.6 Some examples of stable processes; 3.7 First exit time theory; 3.8 Weak noise processes. 
505 8 |a 3.9 Monte Carlo simulation of continuous Markov processesChapter 4. Jump Markov Processes with Continuum States; 4.1 The jump propagator and its characterizing functions; 4.2 Time-evolution equations; 4.3 The next-jump density function; 4.4 Completely homogeneous jump Markov processes; 4.5 A rigorous approach to self-diffusion and Brownian motion; 4.6 Monte Carlo simulation of continuum-state jump Markov processes; Chapter 5. Jump Markov Processes with Discrete States; 5.1 Foundational elements of discrete state Markov processes; 5.2 Completely homogeneous discrete state processes. 
505 8 |a 5.3 Temporally homogeneous Markov processes on the nonnegative integersChapter 6. Temporally Homogeneous Birth-Death Markov Processes; 6.1 Foundational elements; 6.2 The continuous approximation for birth-death Markov processes; 6.3 Some simple birth-death Markov processes; 6.4 Stable birth-death Markov processes; 6.5 Application: The fundamental postulate of statistical; 6.6 The first passage time; 6.7 First exit from an interval; 6.8 Stable state fluctuations and transitions; Appendix A: Some Useful Integral Identities; Appendix B: Integral Representations of the Delta Functions. 
505 8 |a Appendix C: An Approximate Solution Procedure for ""Open"" Moment Evolution EquationsAppendix D: Estimating the Width and Area of a Function Peak; Appendix E: Can the Accuracy of the Continuous Process Simulation Formula Be Improved?; Appendix F: Proof of the Birth-death Stability Theorem; Appendix G: Solution of the Matrix Differential Equation (6.6-62); Index. 
546 |a English. 
650 0 |a Markov processes. 
650 2 |a Markov Chains  |0 (DNLM)D008390 
650 6 |a Processus de Markov.  |0 (CaQQLa)201-0024070 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Stochastic Processes.  |2 bisacsh 
650 7 |a Markov processes  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Markov-Prozess  |2 gnd  |0 (DE-588)4134948-9 
650 1 7 |a Markov-processen.  |2 gtt 
776 0 8 |i Print version:  |a Gillespie, Daniel T.  |t Markov processes.  |d Boston : Academic Press, �1992  |z 0122839552  |w (DLC) 91025738  |w (OCoLC)24064770 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780122839559  |z Texto completo