Cargando…

Advances in imaging and electron physics. Volume 161 /

Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at hig...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hawkes, P. W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Burlington, MA : Academic, 2010.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Advances in Imaging and Electron Physics; Copyright Page; Contents; Preface; Contributors; Future Contributions; Chapter 1: Principles of Dual-Beam Low-Energy Electron Microscopy; I. Introduction; 2. Dual-Beam Approach; 3. Electron-Optical Components; 3.1. Magnetic Immersion Objective Lens; 3.2. Magnetic Prism Array; 3.3. Dual-Beam Gun and Illumination Optics; 3.4. Illumination Optics with ''Twist'' Correctio; 3.5. Illumination Optics with a Semitransparent Holey Mirror; 4. Experimental Results; 4.1. Semiconductor Substrates
  • 4.2. Reticle Substrates: Nano-Imprint Lithography Masks4.3. Experiments with a Tilted Illumination Beam; 4.4. Magnetic Recording Media; 5. Conclusions; Acknowledgments; References; Chapter 2: Determination of Adequate Parameters for Connected Morphological Contrast Mappings through Morphological Contrast Measures; 1. Introduction; 2. Background Definitions; 2.1. Morphological Transformations; 2.2. Connectivity; 2.3. Transformations by Reconstruction; 2.4. Morphological Contrast Mappings; 2.5. Opening and Closing Size Determination; 3. Morphological Contrast Measures
  • 3.1. Morphological Contrast Measure Based on the Difference of Contrast3.2. Morphological Contrast Measure Based on Image Edge Analysis; 4. Magnetic Resonance Imaging Segmentation; 4.1. Opening and Closing Size Determination on MRI Slices; 4.2. Determination of Parameters a and � on MRI Slices; 4.3. White and Grey Matter in the Frontal Lobe; 5. Enhancement of Images in the Presence of Noise; 6. Contrast Measure Comparison; 7. Conclusion; References; Chapter 3: Fractional Fourier Transforms and Geometrical Optics; 1. Introduction; 2. The ABCD Ray Transfer Matrix Method
  • 2.1. Physical Meaning of the ABCD Elements2.2. Basic Optical Components and Ray Transfer Matrices; 2.3. Cardinal Elements of the Optical System; 2.4. Lenses and Imaging; 2.5. Self-Focusing Graded Index Ducts; 3. Extension to Anamorphic Optical Systems; 4. Wave Optics Properties of Geometrical Systems: Fourier Transform Systems; 4.1. Connection between Wave and Ray Optics Formalisms; 4.2. Exact Fourier Transform Optical System; 4.3. Scale of the Optical Fourier Transform; 4.4. Basic Fourier Transform Optical Lens Systems; 4.5. Ray Transfer Matrix Factorizations
  • 4.6. Anamorphic Optical Fourier Transformers5. Cascading Multiple Equivalent Systems: The Fractional Fourier Transform; 5.1. Heuristic Concept of the FRFT Optical System; 5.2. Derivation of the Ray Transfer Matrix of an FRFT System; 5.3. Propetries of the FRFT Operation; 5.4. Basic FRFT Optical Systems; 5.5. Symmetrical Lens Systems; 5.6. Inexact Fractional Fourier Transformers; 5.7. Fractional Fourier Transforms and Fresnel Diffraction; 6. Cardinal Planes in Fractional Fourier Transform Lens Systems; 6.1. Cardinal Planes in a Lohmann Type I FRFT System