Cargando…

Introduction to stochastic dynamic programming /

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ross, Sheldon M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, �1983.
Colección:Probability and mathematical statistics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Introduction to Stochastic Dynamic Programming; Copyright Page; Table of Contents; Dedication; Preface; Chapter I. Finite-Stage Models; 1. Introduction; 2. A Gambling Model; 3. A Stock-Option Model; 4. Modular Functions and Monotone Policies; 5. Accepting the Best Offer; 6. A Sequential Allocation Model; 7. The Interchange Argument in Sequencing; Problems; Notes and References; Chapter II. Discounted Dynamic Programming; 1. Introduction; 2. The Optimality Equation and Optimal Policy; 3. Method of Successive Approximations; 4. Policy Improvement; 5. Solution by Linear Programming.
  • 6. Extension to Unbounded RewardsProblems; References; Chapter III. Minimizing Costs-Negative Dynamic Programming; 1. Introduction and Some Theoretical Results; 2. Optimal Stopping Problems; 3. Bayesian Sequential Analysis; 4. Computational Approaches; 5. Optimal Search; Problems; References; Chapter IV. Maximizing Rewards-Positive Dynamic Programming; 1. Introduction and Main Theoretical Results; 2. Applications to Gambling Theory; 3. Computational Approaches to Obtaining V; Problems; Notes and References; Chapter V. Average Reward Criterion; 1. Introduction and Counterexamples.
  • 2. Existence of an Optimal Stationary Policy3. Computational Approaches; Problems; Notes and References; Chapter VI. Stochastic Scheduling; 1. Introduction; 2. Maximizing Finite-Time Returns-Single Processor; 3. Minimizing Expected Makespan-Processors in Parallel; 4. Minimizing Expected Makespan-Processors in Series; 5. Maximizing Total Field Life; 6. A Stochastic Knapsack Model; 7. A Sequential-Assignment Problem; Problems; Notes and References; Chapter VII. Bandit Processes; 1. Introduction; 2. Single-Project Bandit Processes; 3. Multiproject Bandit Processes.
  • 4. An Extension and a Nonextension5. Generalizations of the Classical Bandit Problem; Problems; Notes and References; Appendix: Stochastic Order Relations; 1. Stochastically Larger; 2. Coupling; 3. Hazard-Rate Ordering; 4. Likelihood-Ratio Ordering; Problems; Reference; Index.