Mathematical techniques and physical applications
Mathematical Techniques and Physical Applications.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York,
Academic Press,
1971.
|
Colección: | Pure and applied physics ;
v. 35. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn680181898 | ||
003 | OCoLC | ||
005 | 20231117044501.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 101108s1971 nyua ob 001 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OPELS |d OCLCQ |d E7B |d OPELS |d OCLCF |d N$T |d IDEBK |d OCLCQ |d YDXCP |d OCLCQ |d UAB |d OCLCQ |d LEAUB |d VLY |d LUN |d OCLCQ |d OCLCO |d S2H |d OCLCO |d COM |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 624418094 |a 841172278 |a 974614955 |a 974669437 |a 1162074702 | ||
020 | |a 9780124068506 |q (electronic bk.) | ||
020 | |a 0124068502 |q (electronic bk.) | ||
020 | |a 9780323142823 |q (electronic bk.) | ||
020 | |a 0323142826 |q (electronic bk.) | ||
020 | |a 1299461204 | ||
020 | |a 9781299461208 | ||
020 | |z 0124068502 | ||
035 | |a (OCoLC)680181898 |z (OCoLC)624418094 |z (OCoLC)841172278 |z (OCoLC)974614955 |z (OCoLC)974669437 |z (OCoLC)1162074702 | ||
042 | |a dlr | ||
050 | 4 | |a QC20 |b .K48 1971 | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 0 | 4 | |a 510/.2/453 |2 18 |
082 | 0 | 4 | |a 530.1/5 |
084 | |a SK 950 |2 rvk | ||
088 | |a 70163766 | ||
100 | 1 | |a Killingbeck, J. P. |q (John P.) | |
245 | 1 | 0 | |a Mathematical techniques and physical applications |c [by] J. Killingbeck [and] G.H.A. Cole. |
260 | |a New York, |b Academic Press, |c 1971. | ||
300 | |a 1 online resource (xiv, 715 pages) |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Pure and applied physics, |v v. 35 | |
504 | |a Includes bibliographical references. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Mathematical Techniques and Physical Applications; Copyright Page; Contents; Preface; Comment on Notation; Chapter 1. Vector Analysis; 1.1. Scalars, Tensors, and Vectors; 1.2. Scalar, Vector, and Tensor Fields; 1.3. Vector Components, Unit Vectors, Right-Handed Cartesian Axes; 1.4. Vector Sums and Products; 1.5. Derivatives of a Vector or Vector Field; 1.6. Integral Theorems; 1.7. Dyadic Formalism; 1.8. Orthogonal Curvilinear Coordinates; 1.9. Uses of Vector Analysis; 1.10. Further Examples Involving the Vector Product; Chapter 2. Matrices | |
505 | 8 | |a 2.1. Simultaneous Linear Equations and Matrix Algebra2.2. Some Common Types of Matrix; 2.3. Inverse of a Matrix, Determinant; 2.4. Theorems Concerning Matrix Products; 2.5. Eigenvectors and Eigenvalues of a Matrix; 2.6. Matrices as Representations of Linear Operators; 2.7. Application of Matrix Theory to Physical Problems; Chapter 3. Tensor Analysis; 3.1. Cartesian Tensors; 3.2. Tensors in Nonorthogonal Frames; 3.3. General Tensors; 3.4. The Christoffel Symbols; 3.5. Length of a Curve, Geodesics; 3.6. Covariant Derivatives; 3.7. The Determinant IgI, Tensor Densities | |
505 | 8 | |a 3.8. Tensor Form of Gradient, Divergence, and Curl3.9. Curvature Tensor; 3.10. Theory of Elasticity; 3.11. Lorentz Covariance of Maxwell's Equations; 3.12. A Summary of Tensor Theory; Chapter 4. Sequences and Series; 4.1. Sequences, Cauchy Sequences, Convergence; 4.2. Series, Absolute and Conditional Convergence; 4.3. Convergence Tests for Series; 4.4. Multiplication and Addition of Series; 4.5. Sequences and Series of Functions, Uniform Convergence; 4.6. Radius of Convergence of a Series, Term-by-Term Differentiation and Integration; 4.7. Dirichlet Conditions for Fourier Series | |
505 | 8 | |a 4.8. Exponential Function4.9. Results Involving Integrals; 4.10. Series in Physical Theory; 4.11. Convergence of Iterative Processes; 4.12. Perturbation Theory; 4.13. Partial Summation Procedures; Chapter 5. Complex Variables and Analytic Functions; 5.1. Complex Numbers and Polynomial Equations; 5.2. Argand Diagram; 5.3. de Moivre's Theorem; 5.4. Complex Numbers in Physical Problems; 5.5. Differentiation, Analytic Functions; 5.6. Taylor Series for the Complex Variable; 5.7. Analytic Continuation; 5.8. Singularities, Poles, and Residues; 5.9. Quaternions | |
505 | 8 | |a 5.10. Principal Part of an Integral, Kramers-Kronig Relations5.11. Fourier Transforms; 5.12. Truncated Fourier Series for Real Variables; 5.13. Laplace Transform; 5.14. Laplace's Equation; 5.15. Use of Closed Contour Integrals in Physics; Chapter 6. Variational Calculus; 6.1. Stationary and Extreme Values of Ordinary Functions; 6.2. Functionals and Functional Derivatives; 6.3. Variation with Auxiliary Conditions, Lagrange Multipliers; 6.4. Variational Principles in Mechanics; 6.5. Schr�odinger Equation and Related Variational Principles; 6.6. Continuous Fields, Wave Equation | |
520 | |a Mathematical Techniques and Physical Applications. | ||
546 | |a English. | ||
650 | 0 | |a Mathematical physics. | |
650 | 6 | |a Physique math�ematique. |0 (CaQQLa)201-0008394 | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Mathematical physics |2 fast |0 (OCoLC)fst01012104 | |
650 | 7 | |a Mathematik |2 gnd |0 (DE-588)4037944-9 | |
650 | 7 | |a Mathematische Methode |2 gnd |0 (DE-588)4155620-3 | |
650 | 7 | |a Mathematische Physik |2 gnd |0 (DE-588)4037952-8 | |
650 | 7 | |a Physik |2 gnd |0 (DE-588)4045956-1 | |
650 | 7 | |a Physiker |2 gnd |0 (DE-588)4045968-8 | |
650 | 7 | |a F�isica matem�atica. |2 lemb | |
650 | 7 | |a Physique math�ematique. |2 ram | |
700 | 1 | |a Cole, G. H. A., |e author. | |
776 | 0 | 8 | |i Print version: |a Killingbeck, J.P. (John P.). |t Mathematical techniques and physical applications. |d New York, Academic Press, 1971 |w (DLC) 70163766 |w (OCoLC)163001 |
830 | 0 | |a Pure and applied physics ; |v v. 35. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780124068506 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00798193 |z Texto completo |