|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn679316543 |
003 |
OCoLC |
005 |
20231117044452.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
101107s1984 flua ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d E7B
|d OCLCQ
|d OCLCO
|d OCLCA
|d AU@
|d UKAHL
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GB8524296
|2 bnb
|
016 |
7 |
|
|a 000021958824
|2 AU
|
019 |
|
|
|a 622316705
|a 1057996052
|a 1100924895
|a 1162099112
|
020 |
|
|
|a 9780126848809
|q (electronic bk.)
|
020 |
|
|
|a 0126848807
|q (electronic bk.)
|
020 |
|
|
|a 9781483269276
|q (e-book)
|
020 |
|
|
|a 1483269272
|
035 |
|
|
|a (OCoLC)679316543
|z (OCoLC)622316705
|z (OCoLC)1057996052
|z (OCoLC)1100924895
|z (OCoLC)1162099112
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA274
|b .T35 1984
|
082 |
0 |
4 |
|a 519.2
|2 19
|
084 |
|
|
|a SK 820
|2 rvk
|
084 |
|
|
|a MAT 605f
|2 stub
|
100 |
1 |
|
|a Taylor, Howard M.
|
245 |
1 |
3 |
|a An introduction to stochastic modeling /
|c Howard M. Taylor, Samuel Karlin.
|
260 |
|
|
|a Orlando :
|b Academic Press,
|c �1984.
|
300 |
|
|
|a 1 online resource (x, 399 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 387-388) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; An Introduction to Stochastic Modeling; Copyright Page; Table of Contents; Prefac; Chapter 1. Introduction; 1.1 Stochastic Modeling; 1.2 Probability Review; 1.3 The Major Discrete Distributions; 1.4 Important Continuous Distributions; 1.5 Some Elementary Exercises; 1.6 Useful Functions, Integrals, and Sums; Chapter 2. Conditional Probability and Conditional Expectation; 2.1 The Discrete Case; 2.2 The Dice Game Craps; 2.3 Random Sums; 2.4 Conditioning on a Continuous Random Variable; Chapter 3. Markov Chains: Introduction; 3.1 Definitions
|
505 |
8 |
|
|a 3.2 Transition Probability Matrices of a Marlcov Chain3.3 Some Markov Chain Models; 3.4 First Step Analysis; 3.5 Some Special Markov Chains; 3.6 Functionals of Random Walks and Success Runs; 3.7 Another Look at First Step Analysis; Chapter 4. The Long Run Behavior of Markov Chains; 4.1 Regular Transition Probability Matrices; 4.2 Examples; 4.3 The Classification of States; 4.4 The Basic Limit Theorem of Markov Chains; 4.5 Reducible Markov Chains; 4.6 Sequential Decisions and Markov Chains; Chapter 5. Poisson Processes; 5.1 The Poisson Distribution and the Poisson Process
|
505 |
8 |
|
|a 5.2 The Law of Rare Events5.3 Distributions Associated with the Poisson Process; 5.4 The Uniform Distribution and Poisson Processes; 5.5 Spatial Poisson Processes; 5.6 Compound and Marked Poisson Processes; Chapter 6. Continuous Time Markov Chains; 6.1 Pure Birth Processes; 6.2 Pure Death Processes; 6.3 Birth and Death Processes; 6.4 The Limiting Behavior of Birth and Death Processes; 6.5 Birth and Death Processes with Absorbing States; 6.6 Finite State Continuous Time Markov Chains; 6.7 Set Valued Processes; Chapter 7. Renewal Phenomena
|
505 |
8 |
|
|a 7.1 Definition of a Renewal Process and Related Concepts7.2 Some Examples of Renewal Processes; 7.3 The Poisson Process Viewed as a Renewal Process; 7.4 The Asymptotic Behavior of Renewal Processes; 7.5 Generalizations and Variations on Renewal Processes; 7.6 Discrete Renewal Theory; Chapter 8. Branching Processes and Population Growth; 8.1 Branching Processes; 8.2 Branching Processes and Generating Functions; 8.3 Geometrically Distributed Offspring; 8.4 Variations on Branching Processes; 8.5 Some Stochastic Models of Plasmid Reproduction and Plasmid Copy Number Partition
|
520 |
|
|
|a An Introduction to Stochastic Modeling.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
2 |
|a Stochastic Processes
|0 (DNLM)D013269
|
650 |
|
6 |
|a Processus stochastiques.
|0 (CaQQLa)201-0002663
|
650 |
|
7 |
|a Stochastic processes.
|2 fast
|0 (OCoLC)fst01133519
|
650 |
|
7 |
|a Stochastisches Modell
|2 gnd
|0 (DE-588)4057633-4
|
650 |
|
7 |
|a Analyse stochastique.
|2 ram
|
653 |
|
|
|a Stochastic models
|
700 |
1 |
|
|a Karlin, Samuel,
|d 1923-2007.
|
776 |
0 |
8 |
|i Print version:
|a Taylor, Howard M.
|t Introduction to stochastic modeling.
|d Orlando : Academic Press, �1984
|w (DLC) 84070475
|w (OCoLC)11534955
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780126848809
|z Texto completo
|