Chargement en cours…

Mathematical theory of sedimentation analysis.

Mathematical Theory of Sedimentation Analysis presents the flow equations for the ultracentrifuge. This book is organized into two parts encompassing six chapters that evaluate the systems of reacting components, the differential equations for the ultracentrifuge, and the case of negligible diffusio...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Fujita, Hiroshi, 1922-
Format: Électronique eBook
Langue:Inglés
Publié: New York, Academic Press, 1962.
Collection:Physical chemistry ; v. 11.
Sujets:
Accès en ligne:Texto completo
Table des matières:
  • Front Cover; Mathematical Theory of Sedimentation Analysis; Copyright Page; Foreword; Preface; Table of Contents; Introduction; PART I: Transport; CHAPTER I. Flow Equations for the Ultracentrifuge; 1.1 Introduction; 1.2 The Coordinate System; 1.3 Definitions of Flows; 1.4 Phenomenological Equations and Coefficients; 1.5 Flow Equations for Sedimentation in the Ultracentrifuge; 1.6 The Svedberg Equation and Its Extensions; 1.7 The Differential Equations for the Ultracentrifuge; 1.8 Electrolyte Solutions; 1.9 Tests of the Onsager Reciprocal Relation; 1.10 Systems of Reacting Components
  • CHAPTER V. Sedimentation-Diffusion EquilibriumA. INTRODUCTION; B. TWO-COMPONENT SYSTEMS; C. THREE-COMPONENT SYSTEMS; D. POLYMER SOLUTIONS; E. DETERMINATION OF THE MOLECULAR WEIGHT DISTRIBUTION; F. OTHER PROBLEMS; REFERENCES; CHAPTER VI. Approach to Sedimentation Equilibrium; 6.1 Introductory Remarks; 6.2 Prediction of the Time Required to Reach Equilibrium; 6.3 Measurement of the Diffusion Coefficient from the Rate of Approach to Equilibrium; 6.4 Nazarian's Approach to the Determination of D; 6.5 Application of the Synthetic Boundary Cell; REFERENCES; Author Index; Subject Index