Cargando…

Set theory : an introduction to independence proofs /

Provability, Computability and Reflection.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kunen, Kenneth
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York : North-Holland Pub. Co. ; Sole distributors for the U.S.A. and Canada, Elsevier North-Holland, 1980.
Colección:Studies in logic and the foundations of mathematics ; v. 102.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn428099631
003 OCoLC
005 20231117032822.0
006 m o d
007 cr cn|||||||||
008 090728s1980 ne ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d IDEBK  |d OCLCQ  |d E7B  |d OCLCQ  |d N$T  |d OPELS  |d OCLCF  |d YDXCP  |d EBLCP  |d OCLCQ  |d DEBBG  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d INARC  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 649907784  |a 813230945  |a 892068052 
020 |a 9780080955087  |q (electronic bk.) 
020 |a 0080955088  |q (electronic bk.) 
020 |a 9780080570587 
020 |a 0080570585 
020 |z 9780444854018 
020 |z 0444854010 
020 |z 0720422000 
020 |z 0444868399 
020 |z 9780444868398 
020 |z 9780720422009 
035 |a (OCoLC)428099631  |z (OCoLC)649907784  |z (OCoLC)813230945  |z (OCoLC)892068052 
050 4 |a QA248  |b .K75 1980 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 22 
084 |a 31.10  |2 bcl 
100 1 |a Kunen, Kenneth. 
245 1 0 |a Set theory :  |b an introduction to independence proofs /  |c Kenneth Kunen. 
260 |a Amsterdam ;  |a New York :  |b North-Holland Pub. Co. ;  |a New York :  |b Sole distributors for the U.S.A. and Canada, Elsevier North-Holland,  |c 1980. 
300 |a 1 online resource (xvi, 313 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in logic and the foundations of mathematics ;  |v v. 102 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Front Cover; Set Theory: An Introduction to Independence Proofs; Copyright Page; Contents; Preface; Introduction; 1. Consistency results; 2. Prerequisites; 3. Outline; 4. How to use this book; 5. What has been omitted; 6. On references; 7. Theaxioms; Chapter I. The foundations of set theory; 1. Why axioms?; 2. Why formal logic?; 3. The philosophy of mathematics; 4. What we are describing; 5. Extensionality and Comprehension; 6. Relations, functions, and well-ordering; 7. Ordinals; 8. Remarks on defined notions; 9. Classes and recursion; 10. Cardinals; 11. The real numbers. 
505 8 |a 12. Appendix 1 : Other set theories13. Appendix 2: Eliminating defined notions; 14. Appendix 3 : Formalizing the metatheory; Exercises for Chapter; Chapter II. Infinitary combinatorics; 1. Almost disjoint and quasi-disjoint sets; 2. Martin's Axiom; 3. Equivalents of MA; 4. The Suslin problem; 5. Trees; 6. The c.u.b. filter; 7. O and 0+; Exercises for Chapter II; Chapter III. The well-founded sets; 1. Introduction; 2. Properties of the well-founded sets; 3. Well-founded relations; 4. The Axiom of Foundation; 5 . Induction and recursion on well-founded relations; Exercises for Chapter III. 
505 8 |a Chapter IV. Easy consistency proofs1. Three informal proofs; 2. Relativization; 3. Absoluteness; 4. The last word on Foundation; 5 . More absoluteness; 6. The H(K); 7. Reflection theorems; 8. Appendix 1: More on relativization; 9. Appendix 2: Model theory in the metatheory; 10. Appendix 3: Model theory in the formal theory; Exercises for Chapter IV; Chapter V. Defining definability; 1. Formalizing definability; 2. Ordinal definable sets; Exercises for Chapter V; Chapter VI. The constructible sets; 1. Basic properties of L; 2. ZF in L; 3. The Axiom of Constructibility; 4. AC and GCH in L. 
505 8 |a 5. 0 and 0+ in LExercises for Chapter VI; Chapter VII. Forcing; 1. General remarks; 2. Generic extensions; 3. Forcing; 4. ZFC in M[G]; 5. Forcing with finite partial functions; 6. Forcing with partial functions of larger cardinality; 7. Embeddings, isomorphisms, and Boolean-valued models; 8. Further results; 9. Appendix: Other approaches and historical remarks; Exercises for Chapter VII; Chapter VIII. Iterated forcing; 1. Products; 2. More on the Cohen model; 3. The independence of Kurepa's Hypothesis; 4. Easton forcing; 5. General iterated forcing; 6. The consistency of MA + +CH. 
505 8 |a 7. Countable iterationsExercises for Chapter VIII; Bibliography; Index of special symbols; General Index. 
520 |a Provability, Computability and Reflection. 
650 0 |a Axiomatic set theory. 
650 6 |a Th�eorie axiomatique des ensembles.  |0 (CaQQLa)201-0039741 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Axiomatic set theory.  |2 fast  |0 (OCoLC)fst00824491 
650 1 7 |a Verzamelingen (wiskunde)  |2 gtt 
650 1 7 |a Axioma's.  |2 gtt 
650 7 |a Ensembles, th�eorie axiomatique des.  |2 ram 
776 0 8 |i Print version:  |a Kunen, Kenneth.  |t Set theory.  |d Amsterdam ; New York : North-Holland Pub. Co. ; New York : Sole distributors for the U.S.A. and Canada, Elsevier North-Holland, 1980  |z 0444854010  |z 9780444854018  |w (DLC) 80020375  |w (OCoLC)6649856 
830 0 |a Studies in logic and the foundations of mathematics ;  |v v. 102. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444854018  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444868398  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/0049237X/102  |z Texto completo