Set theory : an introduction to independence proofs /
Provability, Computability and Reflection.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York :
North-Holland Pub. Co. ; Sole distributors for the U.S.A. and Canada, Elsevier North-Holland,
1980.
|
Colección: | Studies in logic and the foundations of mathematics ;
v. 102. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn428099631 | ||
003 | OCoLC | ||
005 | 20231117032822.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090728s1980 ne ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OCLCQ |d IDEBK |d OCLCQ |d E7B |d OCLCQ |d N$T |d OPELS |d OCLCF |d YDXCP |d EBLCP |d OCLCQ |d DEBBG |d OCLCQ |d DEBSZ |d OCLCQ |d INARC |d LUN |d S2H |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d COM |d OCLCO |d OCLCQ | ||
019 | |a 649907784 |a 813230945 |a 892068052 | ||
020 | |a 9780080955087 |q (electronic bk.) | ||
020 | |a 0080955088 |q (electronic bk.) | ||
020 | |a 9780080570587 | ||
020 | |a 0080570585 | ||
020 | |z 9780444854018 | ||
020 | |z 0444854010 | ||
020 | |z 0720422000 | ||
020 | |z 0444868399 | ||
020 | |z 9780444868398 | ||
020 | |z 9780720422009 | ||
035 | |a (OCoLC)428099631 |z (OCoLC)649907784 |z (OCoLC)813230945 |z (OCoLC)892068052 | ||
050 | 4 | |a QA248 |b .K75 1980 | |
072 | 7 | |a MAT |x 028000 |2 bisacsh | |
082 | 0 | 4 | |a 511.3/22 |2 22 |
084 | |a 31.10 |2 bcl | ||
100 | 1 | |a Kunen, Kenneth. | |
245 | 1 | 0 | |a Set theory : |b an introduction to independence proofs / |c Kenneth Kunen. |
260 | |a Amsterdam ; |a New York : |b North-Holland Pub. Co. ; |a New York : |b Sole distributors for the U.S.A. and Canada, Elsevier North-Holland, |c 1980. | ||
300 | |a 1 online resource (xvi, 313 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in logic and the foundations of mathematics ; |v v. 102 | |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Set Theory: An Introduction to Independence Proofs; Copyright Page; Contents; Preface; Introduction; 1. Consistency results; 2. Prerequisites; 3. Outline; 4. How to use this book; 5. What has been omitted; 6. On references; 7. Theaxioms; Chapter I. The foundations of set theory; 1. Why axioms?; 2. Why formal logic?; 3. The philosophy of mathematics; 4. What we are describing; 5. Extensionality and Comprehension; 6. Relations, functions, and well-ordering; 7. Ordinals; 8. Remarks on defined notions; 9. Classes and recursion; 10. Cardinals; 11. The real numbers. | |
505 | 8 | |a 12. Appendix 1 : Other set theories13. Appendix 2: Eliminating defined notions; 14. Appendix 3 : Formalizing the metatheory; Exercises for Chapter; Chapter II. Infinitary combinatorics; 1. Almost disjoint and quasi-disjoint sets; 2. Martin's Axiom; 3. Equivalents of MA; 4. The Suslin problem; 5. Trees; 6. The c.u.b. filter; 7. O and 0+; Exercises for Chapter II; Chapter III. The well-founded sets; 1. Introduction; 2. Properties of the well-founded sets; 3. Well-founded relations; 4. The Axiom of Foundation; 5 . Induction and recursion on well-founded relations; Exercises for Chapter III. | |
505 | 8 | |a Chapter IV. Easy consistency proofs1. Three informal proofs; 2. Relativization; 3. Absoluteness; 4. The last word on Foundation; 5 . More absoluteness; 6. The H(K); 7. Reflection theorems; 8. Appendix 1: More on relativization; 9. Appendix 2: Model theory in the metatheory; 10. Appendix 3: Model theory in the formal theory; Exercises for Chapter IV; Chapter V. Defining definability; 1. Formalizing definability; 2. Ordinal definable sets; Exercises for Chapter V; Chapter VI. The constructible sets; 1. Basic properties of L; 2. ZF in L; 3. The Axiom of Constructibility; 4. AC and GCH in L. | |
505 | 8 | |a 5. 0 and 0+ in LExercises for Chapter VI; Chapter VII. Forcing; 1. General remarks; 2. Generic extensions; 3. Forcing; 4. ZFC in M[G]; 5. Forcing with finite partial functions; 6. Forcing with partial functions of larger cardinality; 7. Embeddings, isomorphisms, and Boolean-valued models; 8. Further results; 9. Appendix: Other approaches and historical remarks; Exercises for Chapter VII; Chapter VIII. Iterated forcing; 1. Products; 2. More on the Cohen model; 3. The independence of Kurepa's Hypothesis; 4. Easton forcing; 5. General iterated forcing; 6. The consistency of MA + +CH. | |
505 | 8 | |a 7. Countable iterationsExercises for Chapter VIII; Bibliography; Index of special symbols; General Index. | |
520 | |a Provability, Computability and Reflection. | ||
650 | 0 | |a Axiomatic set theory. | |
650 | 6 | |a Th�eorie axiomatique des ensembles. |0 (CaQQLa)201-0039741 | |
650 | 7 | |a MATHEMATICS |x Set Theory. |2 bisacsh | |
650 | 7 | |a Axiomatic set theory. |2 fast |0 (OCoLC)fst00824491 | |
650 | 1 | 7 | |a Verzamelingen (wiskunde) |2 gtt |
650 | 1 | 7 | |a Axioma's. |2 gtt |
650 | 7 | |a Ensembles, th�eorie axiomatique des. |2 ram | |
776 | 0 | 8 | |i Print version: |a Kunen, Kenneth. |t Set theory. |d Amsterdam ; New York : North-Holland Pub. Co. ; New York : Sole distributors for the U.S.A. and Canada, Elsevier North-Holland, 1980 |z 0444854010 |z 9780444854018 |w (DLC) 80020375 |w (OCoLC)6649856 |
830 | 0 | |a Studies in logic and the foundations of mathematics ; |v v. 102. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444854018 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444868398 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/0049237X/102 |z Texto completo |