MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316568414
003 OCoLC
005 20231117015248.0
006 m o d
007 cr cnu---unuuu
008 090320s1984 flu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d OCLCQ  |d EBLCP  |d IDEBK  |d OPELS  |d E7B  |d OCLCQ  |d OPELS  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCF  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d K6U  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO 
019 |a 646827635 
020 |a 9780126854800  |q (electronic bk.) 
020 |a 0126854807  |q (electronic bk.) 
020 |a 9780080956787  |q (electronic bk.) 
020 |a 0080956785  |q (electronic bk.) 
035 |a (OCoLC)316568414  |z (OCoLC)646827635 
050 4 |a QA402  |b .T46 1984eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515.3/53  |2 22 
100 1 |a Teo, K. L. 
245 1 0 |a Computational methods for optimizing distributed systems /  |c K.L. Teo, Z.S. Wu. 
260 |a Orlando :  |b Academic Press,  |c 1984. 
300 |a 1 online resource (xiii, 317 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 173 
504 |a Includes bibliographical references (pages 301-312) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property 
505 8 |a 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description 
505 8 |a 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems 
505 8 |a 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints 
505 8 |a Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index 
520 |a Computational methods for optimizing distributed systems. 
650 0 |a Differential equations, Parabolic  |x Numerical solutions. 
650 0 |a Boundary value problems  |x Numerical solutions. 
650 0 |a Distributed parameter systems. 
650 6 |a �Equations diff�erentielles paraboliques  |x Solutions num�eriques.  |0 (CaQQLa)201-0102324 
650 6 |a Probl�emes aux limites  |x Solutions num�eriques.  |0 (CaQQLa)201-0071799 
650 6 |a Syst�emes �a param�etres r�epartis.  |0 (CaQQLa)201-0116672 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Boundary value problems  |x Numerical solutions  |2 fast  |0 (OCoLC)fst00837129 
650 7 |a Differential equations, Parabolic  |x Numerical solutions  |2 fast  |0 (OCoLC)fst00893482 
650 7 |a Distributed parameter systems  |2 fast  |0 (OCoLC)fst00895588 
700 1 |a Wu, Z. S. 
776 0 8 |i Print version:  |a Teo, K.L.  |t Computational methods for optimizing distributed systems.  |d Orlando : Academic Press, 1984  |z 9780126854800  |w (DLC) 83015737  |w (OCoLC)10018031 
830 0 |a Mathematics in science and engineering ;  |v v. 173. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780126854800  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=173  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/173  |z Texto completo