Computational methods for optimizing distributed systems /
Computational methods for optimizing distributed systems.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Orlando :
Academic Press,
1984.
|
Colección: | Mathematics in science and engineering ;
v. 173. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316568414 | ||
003 | OCoLC | ||
005 | 20231117015248.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1984 flu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OPELS |d E7B |d OCLCQ |d OPELS |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d K6U |d OCLCO |d SGP |d OCLCQ |d OCLCO | ||
019 | |a 646827635 | ||
020 | |a 9780126854800 |q (electronic bk.) | ||
020 | |a 0126854807 |q (electronic bk.) | ||
020 | |a 9780080956787 |q (electronic bk.) | ||
020 | |a 0080956785 |q (electronic bk.) | ||
035 | |a (OCoLC)316568414 |z (OCoLC)646827635 | ||
050 | 4 | |a QA402 |b .T46 1984eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 0 | 4 | |a 515.3/53 |2 22 |
100 | 1 | |a Teo, K. L. | |
245 | 1 | 0 | |a Computational methods for optimizing distributed systems / |c K.L. Teo, Z.S. Wu. |
260 | |a Orlando : |b Academic Press, |c 1984. | ||
300 | |a 1 online resource (xiii, 317 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 173 | |
504 | |a Includes bibliographical references (pages 301-312) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property | |
505 | 8 | |a 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description | |
505 | 8 | |a 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems | |
505 | 8 | |a 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints | |
505 | 8 | |a Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index | |
520 | |a Computational methods for optimizing distributed systems. | ||
650 | 0 | |a Differential equations, Parabolic |x Numerical solutions. | |
650 | 0 | |a Boundary value problems |x Numerical solutions. | |
650 | 0 | |a Distributed parameter systems. | |
650 | 6 | |a �Equations diff�erentielles paraboliques |x Solutions num�eriques. |0 (CaQQLa)201-0102324 | |
650 | 6 | |a Probl�emes aux limites |x Solutions num�eriques. |0 (CaQQLa)201-0071799 | |
650 | 6 | |a Syst�emes �a param�etres r�epartis. |0 (CaQQLa)201-0116672 | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Boundary value problems |x Numerical solutions |2 fast |0 (OCoLC)fst00837129 | |
650 | 7 | |a Differential equations, Parabolic |x Numerical solutions |2 fast |0 (OCoLC)fst00893482 | |
650 | 7 | |a Distributed parameter systems |2 fast |0 (OCoLC)fst00895588 | |
700 | 1 | |a Wu, Z. S. | |
776 | 0 | 8 | |i Print version: |a Teo, K.L. |t Computational methods for optimizing distributed systems. |d Orlando : Academic Press, 1984 |z 9780126854800 |w (DLC) 83015737 |w (OCoLC)10018031 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 173. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780126854800 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=173 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/173 |z Texto completo |