Cargando…

Computational neural networks for geophysical data processing /

This book was primarily written for an audience that has heard about neural networks or has had some experience with the algorithms, but would like to gain a deeper understanding of the fundamental material. For those that already have a solid grasp of how to create a neural network application, thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Poulton, Mary M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Pergamon, 2001.
Edición:1st ed.
Colección:Handbook of geophysical exploration. Seismic exploration ; v. 30.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162566971
003 OCoLC
005 20231117014914.0
006 m o d
007 cr cn|||||||||
008 070806s2001 nyua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d E7B  |d UBY  |d COO  |d OCLCO  |d OCLCQ  |d ZCU  |d DEBSZ  |d STF  |d D6H  |d CEF  |d RRP  |d OCLCQ  |d LEAUB  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 505134315  |a 648325463  |a 1035659338  |a 1136398070 
020 |a 9780080439860 
020 |a 0080439861 
020 |a 1281038091 
020 |a 9781281038098 
020 |a 9786611038090 
020 |a 6611038094 
020 |a 0080529658 
020 |a 9780080529653 
035 |a (OCoLC)162566971  |z (OCoLC)505134315  |z (OCoLC)648325463  |z (OCoLC)1035659338  |z (OCoLC)1136398070 
050 4 |a TN269  |b .C59 2001eb 
072 7 |a QC  |2 lcco 
082 0 4 |a 622/.15/0285632  |2 22 
245 0 0 |a Computational neural networks for geophysical data processing /  |c edited by Mary M. Poulton. 
250 |a 1st ed. 
260 |a New York :  |b Pergamon,  |c 2001. 
300 |a 1 online resource (xiii, 335 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Handbook of geophysical exploration. Seismic exploration,  |x 0950-1401 ;  |v v. 30 
520 |a This book was primarily written for an audience that has heard about neural networks or has had some experience with the algorithms, but would like to gain a deeper understanding of the fundamental material. For those that already have a solid grasp of how to create a neural network application, this work can provide a wide range of examples of nuances in network design, data set design, testing strategy, and error analysis. Computational, rather than artificial, modifiers are used for neural networks in this book to make a distinction between networks that are implemented in hardware and those that are implemented in software. The term artificial neural network covers any implementation that is inorganic and is the most general term. Computational neural networks are only implemented in software but represent the vast majority of applications. While this book cannot provide a blue print for every conceivable geophysics application, it does outline a basic approach that has been used successfully. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Front Cover; Computational Neural Networks for Geophysical Data Processing; Copyright Page; Table of Contents; Preface; Contributing Authors; Part I: Introduction to Computational Neural Networks; Chapter 1. A Brief History; Chapter 2. Biological Versus Computational Neural Networks; Chapter 3. Multi-Layer Perceptrons and Back-Propagation Learning; Chapter 4. Design of Training and Testing Sets; Chapter 5. Alternative Architectures and Learning Rules; Chapter 6. Software and Other Resources; Part II: Seismic Data Processing; Chapter 7. Seismic Interpretation and Processing Applications. 
505 8 |a Chapter 8. Rock Mass and Reservoir CharacterizationChapter 9. Identifying Seismic Crew Noise; Chapter 10. Self-Organizing Map (SOM) Network for Tracking Horizons and Classifying Seismic Traces; Chapter 11. Permeability Estimation with an RBF Network and Levenberg-Marquardt Learning; Chapter 12. Caianiello Neural Network Method for Geophysical Inverse Problems; Part III: Non-Seismic Applications; Chapter 13. Non-Seismic A. 
546 |a English. 
650 0 |a Prospecting  |x Geophysical methods  |x Data processing. 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer  |0 (DNLM)D016571 
650 6 |a Prospection g�eophysique  |0 (CaQQLa)201-0066152  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mining.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Prospecting  |x Geophysical methods  |x Data processing.  |2 fast  |0 (OCoLC)fst01079427 
700 1 |a Poulton, Mary M. 
776 0 8 |i Print version:  |t Computational neural networks for geophysical data processing.  |b 1st ed.  |d New York : Pergamon, 2001  |z 0080439861  |z 9780080439860  |w (DLC) 2001033815  |w (OCoLC)46992095 
830 0 |a Handbook of geophysical exploration.  |n Section I,  |p Seismic exploration ;  |v v. 30. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080439860  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/09501401/30  |z Texto completo