Cargando…

Kohonen maps /

The Self-Organizing Map, or Kohonen Map, is one of the most widely used neural network algorithms, with thousands of applications covered in the literature. It was one of the strong underlying factors in the popularity of neural networks starting in the early 80's. Currently this method has bee...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Oja, Erkki, Kaski, Samuel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : Elsevier, 1999.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162130904
003 OCoLC
005 20231117014845.0
006 m o d
007 cr cn|||||||||
008 070802s1999 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LIP  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
016 7 |a 044450270x  |2 Uk 
019 |a 173503098  |a 441817373  |a 648315897  |a 990607362  |a 1035691944 
020 |a 9780444502704 
020 |a 044450270X 
020 |a 9780080535296  |q (electronic bk.) 
020 |a 0080535291  |q (electronic bk.) 
035 |a (OCoLC)162130904  |z (OCoLC)173503098  |z (OCoLC)441817373  |z (OCoLC)648315897  |z (OCoLC)990607362  |z (OCoLC)1035691944 
050 4 |a QA76.87  |b .K655 1999eb 
072 7 |a Q  |2 lcco 
072 7 |a COM  |x 044000  |2 bisacsh 
082 0 4 |a 006.3/2  |2 22 
245 0 0 |a Kohonen maps /  |c edited by Erkki Oja and Samuel Kaski. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 1999. 
300 |a 1 online resource (ix, 390 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The Self-Organizing Map, or Kohonen Map, is one of the most widely used neural network algorithms, with thousands of applications covered in the literature. It was one of the strong underlying factors in the popularity of neural networks starting in the early 80's. Currently this method has been included in a large number of commercial and public domain software packages. In this book, top experts on the SOM method take a look at the state of the art and the future of this computing paradigm. The 30 chapters of this book cover the current status of SOM theory, such as connections of SOM to clustering, classification, probabilistic models, and energy functions. Many applications of the SOM are given, with data mining and exploratory data analysis the central topic, applied to large databases of financial data, medical data, free-form text documents, digital images, speech, and process measurements. Biological models related to the SOM are also discussed. 
505 0 |a <IT>Selected papers only.</IT>Preface: Kohonen Maps. Table of contents. Analyzing and representing multidimentional quantitative and qualitative data: Demographic study of the R&#xFFFD;hne valley. The domeatic consumption of the Canadian families. (M. Cottrell, P. Gaubert, P. Letremy, P. Rousset). Value maps: Finding value in markets that are expensive (G.J. Deboeck). Data mining and knowledge discovery with emergent Self-Organizing Feature Maps for multivariate time series (A. Ultsch). Tree structured Self-Organizing Maps (P. Koikkalainen). On the optimization of Self-Organizing Maps by genetic algorithms (D. Polani). Self organization of a massive text document collection (T. Kohonen, S. Kaski, K. Lagus, J. Salo&#xFFFD;jrvi, J. Honkela, V. Paatero, A. Saarela). Document classification with Self-Organizing Maps (D. Merkl). Navigation in databases using Self-Organizing Maps (S.A. Shumsky). Self-Organising Maps in computer aided design of electronic circuits (A. Hemani, A. Postula). Modeling self-organization in the visual cortex (R. Miikkulainen, J.A. Bednar, Y. Choe, J. Sirosh). A spatio-temporal memory based on SOMs with activity diffusion (N.R. Euliano, J.C. Principe). Advances in modeling cortical maps (P.G. Morasso, V. Sanguineti, F. Frisone). Topology preservation in Self-Organizing Maps (T. Villmann). Second-order learing in Self-Organizing Maps (R. Der, M. Herrmann). Energy functions for Self-Organizing Maps (T. Heskes). LVQ and single trial EEG classification (G. Pfurtscheller, M. Pregenzer). Self-Organizing Map in categorization of voice qualities (L. Leinonen). Self-Organizing Map in analysis of large-scale industrial systems (O. Simula, J. Ahola, E. Alhoniemi, J. Himberg, J. Vesanto). Keyword index. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
650 0 |a Neural networks (Computer science) 
650 0 |a Self-organizing maps. 
650 2 |a Neural Networks, Computer  |0 (DNLM)D016571 
650 6 |a R&#xFFFD;eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 6 |a Cartes auto-organisatrices.  |0 (CaQQLa)201-0329548 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Self-organizing maps  |2 fast  |0 (OCoLC)fst01111790 
650 1 7 |a Neurale netwerken.  |2 gtt 
700 1 |a Oja, Erkki. 
700 1 |a Kaski, Samuel. 
776 0 8 |i Print version:  |t Kohonen maps.  |b 1st ed.  |d Amsterdam ; New York : Elsevier, 1999  |z 044450270X  |z 9780444502704  |w (DLC) 99035682  |w (OCoLC)41580577 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444502704  |z Texto completo