|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
OR_on1351999040 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
221129s2023 nyua o 001 0 eng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d EBLCP
|d GW5XE
|d YDX
|d OCLCF
|d UKAHL
|d OCLCQ
|d TOH
|d OCLCQ
|d YDX
|d OCLCO
|
019 |
|
|
|a 1352234250
|
020 |
|
|
|a 9781484280058
|q electronic book
|
020 |
|
|
|a 1484280059
|q electronic book
|
020 |
|
|
|z 9781484280041
|
020 |
|
|
|z 1484280040
|
024 |
7 |
|
|a 10.1007/978-1-4842-8005-8
|2 doi
|
029 |
1 |
|
|a AU@
|b 000072964505
|
035 |
|
|
|a (OCoLC)1351999040
|z (OCoLC)1352234250
|
037 |
|
|
|a 9781484280058
|b O'Reilly Media
|
050 |
|
4 |
|a QA76.73.P98
|b M85 2023
|
072 |
|
7 |
|a UN
|2 bicssc
|
072 |
|
7 |
|a COM031000
|2 bisacsh
|
072 |
|
7 |
|a UN
|2 thema
|
082 |
0 |
4 |
|a 005.13/3
|2 23/eng/20221129
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mukhopadhyay, Sayan,
|e author.
|
245 |
1 |
0 |
|a Advanced data analytics using Python :
|b with architectural patterns, text and image classification, and optimization techniques /
|c Sayan Mukhopadhyay, Pratip Samanta.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a New York, NY :
|b Apress,
|c [2023]
|
300 |
|
|
|a 1 online resource (259 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment. Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning. Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application.
|
505 |
0 |
|
|a Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: A Birds Eye View to AI System -- OOP in Python -- Calling Other Languages in Python -- Exposing the Python Model as a Microservice -- High-Performance API and Concurrent Programming -- Choosing the Right Database -- Summary -- Chapter 2: ETL with Python -- MySQL -- How to Install MySQLdb? -- Database Connection -- INSERT Operation -- READ Operation -- DELETE Operation -- UPDATE Operation -- COMMIT Operation -- ROLL-BACK Operation -- Normal Forms
|
505 |
8 |
|
|a First Normal Form -- Second Normal Form -- Third Normal Form -- Elasticsearch -- Connection Layer API -- Neo4j Python Driver -- neo4j-rest-client -- In-Memory Database -- MongoDB (Python Edition) -- Import Data into the Collection -- Create a Connection Using pymongo -- Access Database Objects -- Insert Data -- Update Data -- Remove Data -- Cloud Databases -- Pandas -- ETL with Python (Unstructured Data) -- Email Parsing -- Topical Crawling -- Crawling Algorithms -- Summary -- Chapter 3: Feature Engineering and Supervised Learning -- Dimensionality Reduction with Python -- Correlation Analysis
|
505 |
8 |
|
|a Principal Component Analysis -- Mutual Information -- Classifications with Python -- Semi-Supervised Learning -- Decision Tree -- Which Attribute Comes First? -- Random Forest Classifier -- Naïve Bayes Classifier -- Support Vector Machine -- Nearest Neighbor Classifier -- Sentiment Analysis -- Image Recognition -- Regression with Python -- Least Square Estimation -- Logistic Regression -- Classification and Regression -- Intentionally Bias the Model to Over-Fit or Under-Fit -- Dealing with Categorical Data -- Summary -- Chapter 4: Unsupervised Learning: Clustering -- K-Means Clustering
|
505 |
8 |
|
|a Choosing K: The Elbow Method -- Silhouette Analysis -- Distance or Similarity Measure -- Properties -- General and Euclidean Distance -- Squared Euclidean Distance -- Distance Between String-Edit Distance -- Levenshtein Distance -- Needleman-Wunsch Algorithm -- Similarity in the Context of a Document -- Types of Similarity -- Example of K-Means in Images -- Preparing the Cluster -- Thresholding -- Time to Cluster -- Revealing the Current Cluster -- Hierarchical Clustering -- Bottom-Up Approach -- Distance Between Clusters -- Single Linkage Method -- Complete Linkage Method
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on February 09, 2023).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
700 |
1 |
|
|a Samanta, Pratip,
|e author.
|
776 |
0 |
8 |
|c Original
|z 1484280040
|z 9781484280041
|w (OCoLC)1288664670
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484280058/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH41064756
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7147130
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 303287774
|
994 |
|
|
|a 92
|b IZTAP
|