Cargando…

Applied Recommender Systems with Python : Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques /

This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today. You'll start by learning basic concepts of recommender systems, with an overview of different types...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kulkarni, Akshay (Autor), Shivananda, Adarsha (Autor), Kulkarni, Anoosh (Autor), Krishnan, V. Adithya (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress L. P., 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1351749786
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 221126s2023 caua o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d ORMDA  |d EBLCP  |d GW5XE  |d OCLCF  |d YDX  |d OCLCQ  |d TOH  |d OCLCQ  |d N$T  |d UKAHL  |d OCLCO 
019 |a 1351743459  |a 1357155570  |a 1367326785 
020 |a 9781484289549  |q (electronic bk.) 
020 |a 1484289544  |q (electronic bk.) 
020 |z 1484289536 
020 |z 9781484289532 
024 7 |a 10.1007/978-1-4842-8954-9  |2 doi 
029 1 |a AU@  |b 000073193284 
029 1 |a AU@  |b 000073290167 
035 |a (OCoLC)1351749786  |z (OCoLC)1351743459  |z (OCoLC)1357155570  |z (OCoLC)1367326785 
037 |a 9781484289549  |b O'Reilly Media 
050 4 |a ZA3084 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 025.04  |2 23/eng/20221129 
049 |a UAMI 
100 1 |a Kulkarni, Akshay,  |e author. 
245 1 0 |a Applied Recommender Systems with Python :  |b Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques /  |c Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, V Adithya Krishnan. 
264 1 |a Berkeley, CA :  |b Apress L. P.,  |c 2023. 
300 |a 1 online resource (xiii, 248 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record. 
505 8 |a Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Preface -- Chapter 1: Introduction to Recommendation Systems -- What Are Recommendation Engines? -- Recommendation System Types -- Types of Recommendation Engines -- Market Basket Analysis (Association Rule Mining) -- Content-Based Filtering -- Collaborative-Based Filtering -- Hybrid Systems -- ML Clustering -- ML Classification -- Deep Learning -- Rule-Based Recommendation Systems -- Popularity -- Global Popular Items -- Popular Items by Country -- Buy Again -- Summary 
505 8 |a Chapter 2: Market Basket Analysis (Association Rule Mining) -- Implementation -- Data Collection -- Importing the Data as a DataFrame (pandas) -- Cleaning the Data -- Insights from the Dataset -- Customer Insights -- Loyal Customers -- Number of Orders per Customer -- Money Spent per Customer -- Patterns Based on DateTime -- Preprocessing the Data -- How Many Orders Are Placed per Month? -- How Many Orders Are Placed per Day? -- How Many Orders Are Placed per Hour? -- Free Items and Sales -- Item Insights -- Most Sold Items Based on Quantity -- Items Bought by the Highest Number of Customers 
505 8 |a Most Frequently Ordered Items -- Top Ten First Choices -- Frequently Bought Together (MBA) -- Apriori Algorithm Concepts -- Association Rules -- Implementation Using mlxtend -- If A => then B -- Creating a Function -- Validation -- Visualization of Association Rules -- Summary -- Chapter 3: Content-Based Recommender Systems -- Approach -- Implementation -- Data Collection and Downloading Word Embeddings -- Importing the Data as a DataFrame (pandas) -- Preprocessing the Data -- Text to Features -- One-Hot Encoding (OHE) -- CountVectorizer -- Term Frequency-Inverse Document Frequency (TF-IDF) 
505 8 |a Word Embeddings -- Similarity Measures -- Euclidean Distance -- Cosine Similarity -- Manhattan Distance -- Build a Model Using CountVectorizer -- Build a Model Using TF-IDF Features -- Build a Model Using Word2vec Features -- Build a Model Using fastText Features -- Build a Model Using GloVe Features -- Build a Model Using a Co-occurrence Matrix -- Summary -- Chapter 4: Collaborative Filtering -- Implementation -- Data Collection -- About the Dataset -- Memory-Based Approach -- User-to-User Collaborative Filtering -- Implementation -- Item-to-Item Collaborative Filtering -- Implementation 
505 8 |a KNN-based Approach -- Machine Learning -- Supervised Learning -- Unsupervised Learning -- Reinforcement Learning -- Supervised Learning -- Regression -- Classification -- K-Nearest Neighbor -- Implementation -- Summary -- Chapter 5: Collaborative Filtering Using Matrix Factorization, Singular Value Decomposition, and Co-Clustering -- Implementation -- Matrix Factorization, Co-Clustering, and SVD -- Implementing NMF -- Implementing Co-Clustering -- Implementing SVD -- Getting the Recommendations -- Summary -- Chapter 6: Hybrid Recommender Systems -- Implementation -- Data Collection -- Data Preparation 
520 |a This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today. You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations. By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms. What You Will Learn Understand and implement different recommender systems techniques with Python Employ popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorization Build hybrid recommender systems that incorporate both content-based and collaborative filtering Leverage machine learning, NLP, and deep learning for building recommender systems Who This Book Is For Data scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Recommender systems (Information filtering) 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 6 |a Systèmes de recommandation (Filtrage d'information) 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Recommender systems (Information filtering)  |2 fast 
700 1 |a Shivananda, Adarsha,  |e author. 
700 1 |a Kulkarni, Anoosh,  |e author. 
700 1 |a Krishnan, V. Adithya,  |e author. 
776 0 8 |i Print version:  |a Kulkarni, Akshay  |t Applied Recommender Systems with Python  |d Berkeley, CA : Apress L. P.,c2022  |z 9781484289532 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484289549/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7144566 
938 |a YBP Library Services  |b YANK  |n 18236190 
938 |a EBSCOhost  |b EBSC  |n 3462897 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41064781 
994 |a 92  |b IZTAP