Cargando…

Introduction to ensemble methods /

An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhou, Zhi-Hua, Ph. D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, Fla. ; London : Chapman & Hall/CRC, 2012.
Colección:Chapman & Hall/CRC data mining and knowledge discovery series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000nam a22000007i 4500
001 OR_on1350744941
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 221114s2012 flua ob 000 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCO 
020 |a 9781439830055  |q (electronic bk.) 
020 |a 1439830053  |q (electronic bk.) 
020 |z 9781439830031 
020 |z 1439830037 
020 |z 1439830053 
035 |a (OCoLC)1350744941 
037 |a 9781439830055  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.31015181  |2 23/eng/20221114 
049 |a UAMI 
100 1 |a Zhou, Zhi-Hua,  |c Ph. D.,  |e author. 
245 1 0 |a Introduction to ensemble methods /  |c by Zhi-Hua Zhou. 
264 1 |a Boca Raton, Fla. ;  |a London :  |b Chapman & Hall/CRC,  |c 2012. 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC data mining and knowledge discovery series 
504 |a Includes bibliographical references. 
520 |a An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement. 
588 |a Description based on print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Mathematics. 
650 0 |a Algorithms. 
650 2 |a Algorithms 
650 6 |a Apprentissage automatique  |x Mathématiques. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Algorithms  |2 fast 
776 0 8 |i Print version:  |a Zhou, Zhi-Hua, Ph. D.  |t Introduction to ensemble methods.  |d Boca Raton, Fla. ; London : Chapman & Hall/CRC, 2012  |z 9781439830031  |w (OCoLC)760291251 
830 0 |a Chapman & Hall/CRC data mining and knowledge discovery series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781439830055/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP