Chargement en cours…

Productive and efficient data science with Python : with modularizing, memory profiles, and parallel/GPU processing /

This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering. You'll review the inefficiencies and bottlenecks lurking in the da...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Sarkar, Tirthajyoti (Auteur)
Format: Électronique eBook
Langue:Inglés
Publié: New York, NY : Apress, [2022]
Édition:[First edition].
Sujets:
Accès en ligne:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1334596685
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220706s2022 nyua o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d GW5XE  |d YDX  |d OCLCF  |d N$T  |d OCLCQ 
019 |a 1334526829 
020 |a 9781484281215  |q (electronic bk.) 
020 |a 1484281217  |q (electronic bk.) 
020 |z 1484281209 
020 |z 9781484281208 
024 7 |a 10.1007/978-1-4842-8121-5  |2 doi 
029 1 |a AU@  |b 000072164561 
029 1 |a AU@  |b 000072326485 
029 1 |a AU@  |b 000072392706 
035 |a (OCoLC)1334596685  |z (OCoLC)1334526829 
037 |a 9781484281215  |b O'Reilly Media 
050 4 |a QA76.73.P98 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23/eng/20220706 
049 |a UAMI 
100 1 |a Sarkar, Tirthajyoti,  |e author. 
245 1 0 |a Productive and efficient data science with Python :  |b with modularizing, memory profiles, and parallel/GPU processing /  |c Tirthajyoti Sarkar. 
250 |a [First edition]. 
264 1 |a New York, NY :  |b Apress,  |c [2022] 
300 |a 1 online resource (395 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering. You'll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You'll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You'll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks. In the end, you'll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity. 
505 0 |a Chapter 1: What is Productive and Efficient Data Science -- Chapter 2: Better Programming Principles for Efficient Data Science -- Chapter 3: How to Use Python Data Science Packages more Productively -- Chapter 4: Writing Machine Learning Code More Productively -- Chapter 5: Modular and Productive Deep Learning Code -- Chapter 6: Build Your Own Machine Learning Estimator/Package -- Chapter 7: Some Cool Utility Packages -- Chapter 8: Testing the Machine Learning Code -- Chapter 9: Memory and Timing Profiling -- Chapter 10: Scalable Data Science -- Chapter 11: Parallelized Data Science -- Chapter 12: GPU-Based Data Science for High Productivity -- Chapter 13: Other Useful Skills to Master -- Chapter 14: Wrapping It Up. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |z 1484281209  |z 9781484281208  |w (OCoLC)1294283824 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484281215/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7029021 
938 |a YBP Library Services  |b YANK  |n 303006223 
938 |a EBSCOhost  |b EBSC  |n 3323556 
994 |a 92  |b IZTAP