Cargando…

PyTorch to fastai de hajimeru dīpu rāningu : enjinia no tame no AI apurikēshon kaihatsu /

PyTorchとfastaiではじめるディープラーニング : エンジニアのためのAIアプリケーション開発 /

"Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accompli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Howard, Jeremy (Scientist) (Autor), Gugger, Sylvain (Autor)
Otros Autores: Nakada, Hidemoto (Traductor)
Formato: Electrónico eBook
Idioma:Japonés
Inglés
Publicado: Tōkyō-to Shinjuku-ku : Orairī Japan, 2021.
Edición:Shohan.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:"Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions" --
Descripción Física:1 online resource (584 pages)
ISBN:9784873119427
4873119421