Shu ju fen xi yu ji qi xue xi ji chu.
数据分析与机器学习基础.
Detailed summary in vernacular field.
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Chino Inglés |
Publicado: |
[Place of publication not identified] :
Pearson,
2019.
|
Edición: | [First edition]. |
Colección: | LiveLessons (Indianapolis, Ind.)
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
MARC
LEADER | 00000cgm a22000007i 4500 | ||
---|---|---|---|
001 | OR_on1306339803 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o c | ||
007 | vz czazuu | ||
007 | cr cnannnuuuuu | ||
008 | 220330s2019 xx 454 o vlchi d | ||
040 | |a ORMDA |b eng |e rda |e pn |c ORMDA |d OCLCO |d OCLCF |d OCLCO | ||
066 | |c $1 | ||
024 | 8 | |a 8882021010403 | |
029 | 1 | |a AU@ |b 000071547136 | |
035 | |a (OCoLC)1306339803 | ||
037 | |a 8882021010403 |b O'Reilly Media | ||
041 | 1 | |a chi |h eng | |
050 | 4 | |a Q325.5 | |
082 | 0 | 4 | |a 006.3/1 |2 23 |
049 | |a UAMI | ||
130 | 0 | |a Data analytics and machine learning fundamentals (Motion picture). |l Chinese. | |
245 | 1 | 0 | |6 880-01 |a Shu ju fen xi yu ji qi xue xi ji chu. |
250 | |a [First edition]. | ||
264 | 1 | |a [Place of publication not identified] : |b Pearson, |c 2019. | |
300 | |a 1 online resource (1 video file (7 hr., 34 min.)) : |b sound, color. | ||
306 | |a 073400 | ||
336 | |a two-dimensional moving image |b tdi |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
344 | |a digital |2 rdatr | ||
347 | |a video file |2 rdaft | ||
380 | |a Instructional films |2 lcgft | ||
490 | 1 | |a LiveLessons | |
511 | 0 | |a Presenters: Robert Barton and Jerome Henry. | |
546 | |a Dubbed in Chinese. | ||
588 | 0 | |a Online resource; title from title details screen (O'Reilly, viewed March 30, 2022). | |
520 | |6 880-02 |a Detailed summary in vernacular field. | ||
590 | |a O'Reilly |b O'Reilly Online Learning: Academic/Public Library Edition | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a Neural networks (Computer science) | |
650 | 0 | |a Quantitative research. | |
650 | 0 | |a Mathematical statistics |x Data processing. | |
650 | 2 | |a Neural Networks, Computer | |
650 | 2 | |a Machine Learning | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Recherche quantitative. | |
650 | 6 | |a Statistique mathématique |x Informatique. | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Mathematical statistics |x Data processing |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Quantitative research |2 fast | |
655 | 2 | |a Webcast | |
655 | 7 | |a Instructional films |2 fast | |
655 | 7 | |a Internet videos |2 fast | |
655 | 7 | |a Nonfiction films |2 fast | |
655 | 7 | |a Instructional films. |2 lcgft | |
655 | 7 | |a Nonfiction films. |2 lcgft | |
655 | 7 | |a Internet videos. |2 lcgft | |
655 | 7 | |a Films de formation. |2 rvmgf | |
655 | 7 | |a Films autres que de fiction. |2 rvmgf | |
655 | 7 | |a Vidéos sur Internet. |2 rvmgf | |
700 | 1 | |a Barton, Robert |q (Robert A.), |e presenter. | |
700 | 1 | |a Henry, Jerome, |e presenter. | |
710 | 2 | |a Pearson (Firm), |e publisher. | |
830 | 0 | |a LiveLessons (Indianapolis, Ind.) | |
856 | 4 | 0 | |u https://learning.oreilly.com/videos/~/8882021010403/?ar |z Texto completo (Requiere registro previo con correo institucional) |
880 | 1 | 0 | |6 245-01/$1 |a 数据分析与机器学习基础. |
880 | |6 520-02/$1 |a 课程简介 几乎世界上的每一家公司都在评估自己的数字战略,并寻找利用数字化进行业务转型的机会。大数据分析和机器学习是这一战略的核心。几乎每个行业的高管、数字架构师、IT管理员和通信运营人员都需要了解数据处理和人工智能的基础知识。 在本课程中,经验丰富的两位讲师提供了有效的经验指导,带领大家探索大数据分析、监督学习、无监督学习和神经网络的基本原理。除了深入研究基本概念外,还举例介绍了不同行业的大数据和机器学习用例,并演示了数据科学家和研究人员在不同领域使用的最常见工具(如Hadoop、TensorFlow、Matlab/Octave、R和Python)。 Get技能 了解静态和实时流数据是如何收集、分析和使用的;了解机器学习和模仿人类思维的关键工具和方法: 如何收集非结构化数据,为分析和可视化做准备; 学会比较和对比各种大数据架构; 学会将有监督学习, 线性回归, 数据拟合及强化学习应用到机器学习上,以产生想要的信息结果; 将分类技术应用于机器学习,以更好地分析数据; 利用无监督学习的好处,收集到你意想不到的数据价值; 了解人工神经网络(ANNs)如何进行深度学习,并获得令人叹服的结果; 应用主成分分析(PCA)改进数据分析的管理; 了解在真实系统上实现机器学习的关键方法,以及在进行机器学习项目时必须考虑的各种事项;. | ||
994 | |a 92 |b IZTAP |