Cargando…

Transformers for natural language processing : build, train, and fine-tuning deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and GPT-3 /

Transformers are a game-changer for natural language understanding (NLU) and have become one of the pillars of artificial intelligence. Transformers for Natural Language Processing, 2nd Edition, investigates deep learning for machine translations, speech-to-text, text-to-speech, language modeling, q...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rothman, Denis (Autor)
Otros Autores: Gulli, Antonio (writer of forewrod.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Birmingham, United Kingdom] : Packt Publishing, [2022]
Edición:Second edition.
Colección:Expert insight.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1306240662
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220329s2022 enka o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO 
020 |z 9781803247335 
035 |a (OCoLC)1306240662 
037 |a 9781803247335  |b O'Reilly Media 
050 4 |a Q336 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Rothman, Denis,  |e author. 
245 1 0 |a Transformers for natural language processing :  |b build, train, and fine-tuning deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and GPT-3 /  |c Denis Rothman ; foreword by Antonio Gulli. 
250 |a Second edition. 
264 1 |a [Birmingham, United Kingdom] :  |b Packt Publishing,  |c [2022] 
300 |a 1 online resource (564 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Expert insight 
500 |a Includes index. 
520 |a Transformers are a game-changer for natural language understanding (NLU) and have become one of the pillars of artificial intelligence. Transformers for Natural Language Processing, 2nd Edition, investigates deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question-answering, and many more NLP domains with transformers. An Industry 4.0 AI specialist needs to be adaptable; knowing just one NLP platform is not enough anymore. Different platforms have different benefits depending on the application, whether it's cost, flexibility, ease of implementation, results, or performance. In this book, we analyze numerous use cases with Hugging Face, Google Trax, OpenAI, and AllenNLP. This book takes transformers' capabilities further by combining multiple NLP techniques, such as sentiment analysis, named entity recognition, and semantic role labeling, to analyze complex use cases, such as dissecting fake news on Twitter. Also, see how transformers can create code using just a brief description. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models to various datasets. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence  |x Data processing. 
650 0 |a Artificial intelligence  |x Computer programs. 
650 0 |a Python (Computer program language) 
650 0 |a Cloud computing. 
650 6 |a Intelligence artificielle  |x Informatique. 
650 6 |a Intelligence artificielle  |x Logiciels. 
650 6 |a Python (Langage de programmation) 
650 6 |a Infonuagique. 
650 7 |a Artificial intelligence  |x Computer programs  |2 fast 
650 7 |a Artificial intelligence  |x Data processing  |2 fast 
650 7 |a Cloud computing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Gulli, Antonio,  |e writer of forewrod. 
830 0 |a Expert insight. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803247335/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP