Nonlinear filters : theory and applications /
"This book fills the gap between the literature on nonlinear filters and nonlinear observers by presenting a new state estimation strategy, the smooth variable structure filter (SVSF). The book is a valuable resource to researchers outside of the control society, where literature on nonlinear o...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc.,
2022.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- List of Figures xiii
- List of Table xv
- Preface xvii
- Acknowledgments xix
- Acronyms xxi
- 1 Introduction 1
- 1.1 State of a Dynamic System 1
- 1.2 State Estimation 1
- 1.3 Construals of Computing 2
- 1.4 Statistical Modeling 3
- 1.5 Vision for the Book 4
- 2 Observability 7
- 2.1 Introduction 7
- 2.2 State-Space Model 7
- 2.3 The Concept of Observability 9
- 2.4 Observability of Linear Time-Invariant Systems 10
- 2.4.1 Continuous-Time LTI Systems 10
- 2.4.2 Discrete-Time LTI Systems 12
- 2.4.3 Discretization of LTI Systems 14
- 2.5 Observability of Linear Time-Varying Systems 14
- 2.5.1 Continuous-Time LTV Systems 14
- 2.5.2 Discrete-Time LTV Systems 16
- 2.5.3 Discretization of LTV Systems 17
- 2.6 Observability of Nonlinear Systems 17
- 2.6.1 Continuous-Time Nonlinear Systems 18
- 2.6.2 Discrete-Time Nonlinear Systems 21
- 2.6.3 Discretization of Nonlinear Systems 22
- 2.7 Observability of Stochastic Systems 23
- 2.8 Degree of Observability 25
- 2.9 Invertibility 26
- 2.10 Concluding Remarks 27
- 3 Observers 29
- 3.1 Introduction 29
- 3.2 Luenberger Observer 30
- 3.3 Extended Luenberger-Type Observer 31
- 3.4 Sliding-Mode Observer 33
- 3.5 Unknown-Input Observer 35
- 3.6 Concluding Remarks 39
- 4 Bayesian Paradigm and Optimal Nonlinear Filtering 41
- 4.1 Introduction 41
- 4.2 Bayes' Rule 42
- 4.3 Optimal Nonlinear Filtering 42
- 4.4 Fisher Information 45
- 4.5 Posterior Cramér-Rao Lower Bound 46
- 4.6 Concluding Remarks 47
- 5 Kalman Filter 49
- 5.1 Introduction 49
- 5.2 Kalman Filter 50
- 5.3 Kalman Smoother 53
- 5.4 Information Filter 54
- 5.5 Extended Kalman Filter 54
- 5.6 Extended Information Filter 54
- 5.7 Divided-Difference Filter 54
- 5.8 Unscented Kalman Filter 60
- 5.9 Cubature Kalman Filter 60
- 5.10 Generalized PID Filter 64
- 5.11 Gaussian-Sum Filter 65
- 5.12 Applications 67
- 5.12.1 Information Fusion 67
- 5.12.2 Augmented Reality 67
- 5.12.3 Urban Traffic Network 67
- 5.12.4 Cybersecurity of Power Systems 67
- 5.12.5 Incidence of Influenza 68
- 5.12.6 COVID-19 Pandemic 68
- 5.13 Concluding Remarks 70
- 6 Particle Filter 71
- 6.1 Introduction 71
- 6.2 Monte Carlo Method 72
- 6.3 Importance Sampling 72
- 6.4 Sequential Importance Sampling 73
- 6.5 Resampling 75
- 6.6 Sample Impoverishment 76
- 6.7 Choosing the Proposal Distribution 77
- 6.8 Generic Particle Filter 78
- 6.9 Applications 81
- 6.9.1 Simultaneous Localization and Mapping 81
- 6.10 Concluding Remarks 82
- 7 Smooth Variable-Structure Filter 85
- 7.1 Introduction 85
- 7.2 The Switching Gain 86
- 7.3 Stability Analysis 90
- 7.4 Smoothing Subspace 93
- 7.5 Filter Corrective Term for Linear Systems 96
- 7.6 Filter Corrective Term for Nonlinear Systems 102
- 7.7 Bias Compensation 105
- 7.8 The Secondary Performance Indicator 107
- 7.9 Second-Order Smooth Variable Structure Filter 108
- 7.10 Optimal Smoothing Boundary Design 108
- 7.11 Combination of SVSF with Other Filters 110
- 7.12 Applications 110
- 7.12.1 Multiple Target Tracking 111
- 7.12.2 Battery State-of-Charge Estimation 111
- 7.12.3 Robotics 111
- 7.13 Concluding Remarks 111
- 8 Deep Learning 113
- 8.1 Introduction 113
- 8.2 Gradient Descent 114
- 8.3 Stochastic Gradient Descent 115
- 8.4 Natural Gradient Descent 119
- 8.5 Neural Networks 120
- 8.6 Backpropagation 122
- 8.7 Backpropagation Through Time 122
- 8.8 Regularization 122
- 8.9 Initialization 125
- 8.10 Convolutional Neural Network 125
- 8.11 Long Short-Term Memory 127
- 8.12 Hebbian Learning 129
- 8.13 Gibbs Sampling 131
- 8.14 Boltzmann Machine 131
- 8.15 Autoencoder 135
- 8.16 Generative Adversarial Network 136
- 8.17 Transformer 137
- 8.18 Concluding Remarks 139
- 9 Deep Learning-Based Filters 141
- 9.1 Introduction 141
- 9.2 Variational Inference 142
- 9.3 Amortized Variational Inference 144
- 9.4 Deep Kalman Filter 144
- 9.5 Backpropagation Kalman Filter 146
- 9.6 Differentiable Particle Filter 148
- 9.7 Deep Rao-Blackwellized Particle Filter 152
- 9.8 Deep Variational Bayes Filter 158
- 9.9 Kalman Variational Autoencoder 167
- 9.10 Deep Variational Information Bottleneck 172
- 9.11 Wasserstein Distributionally Robust Kalman Filter 176
- 9.12 Hierarchical Invertible Neural Transport 178
- 9.13 Applications 182
- 9.13.1 Prediction of Drug Effect 182
- 9.13.2 Autonomous Driving 183
- 9.14 Concluding Remarks 183
- 10 Expectation Maximization 185
- 10.1 Introduction 185
- 10.2 Expectation Maximization Algorithm 185
- 10.3 Particle Expectation Maximization 188
- 10.4 Expectation Maximization for Gaussian Mixture Models 190
- 10.5 Neural Expectation Maximization 191
- 10.6 Relational Neural Expectation Maximization 194
- 10.7 Variational Filtering Expectation Maximization 196
- 10.8 Amortized Variational Filtering Expectation Maximization 198
- 10.9 Applications 199
- 10.9.1 Stochastic Volatility 199
- 10.9.2 Physical Reasoning 200
- 10.9.3 Speech, Music, and Video Modeling 200
- 10.10 Concluding Remarks 201
- 11 Reinforcement Learning-Based Filter 203
- 11.1 Introduction 203
- 11.2 Reinforcement Learning 204
- 11.3 Variational Inference as Reinforcement Learning 207
- 11.4 Application 210
- 11.4.1 Battery State-of-Charge Estimation 210
- 11.5 Concluding Remarks 210
- 12 Nonparametric Bayesian Models 213
- 12.1 Introduction 213
- 12.2 Parametric vs Nonparametric Models 213
- 12.3 Measure-Theoretic Probability 214
- 12.4 Exchangeability 219
- 12.5 Kolmogorov Extension Theorem 221
- 12.6 Extension of Bayesian Models 223
- 12.7 Conjugacy 224
- 12.8 Construction of Nonparametric Bayesian Models 226
- 12.9 Posterior Computability 227
- 12.10 Algorithmic Sufficiency 228
- 12.11 Applications 232
- 12.11.1 Multiple Object Tracking 233
- 12.11.2 Data-Driven Probabilistic Optimal Power Flow 233
- 12.11.3 Analyzing Single-Molecule Tracks 233
- 12.12 Concluding Remarks 233
- References 235
- Index 253.