Building custom transformers and estimators to extend PySpark's ML Pipelines.
ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!.
Cote: | Libro Electrónico |
---|---|
Format: | Électronique Vidéo |
Langue: | Inglés |
Publié: |
[Place of publication not identified] :
Manning Publications,
2021.
|
Édition: | [First edition]. |
Sujets: | |
Accès en ligne: | Texto completo (Requiere registro previo con correo institucional) |
Documents similaires
-
Learning PySpark : build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 /
par: Drabas, Tomasz, et autres
Publié: (2017) -
Learning PySpark : build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 /
par: Drabas, Tomasz, et autres
Publié: (2017) -
Machine learning with Pyspark : with natural language processing and recommender systems /
par: Singh, Pramod
Publié: (2022) -
Machine learning with Pyspark : with natural language processing and recommender systems /
par: Singh, Pramod
Publié: (2022) -
Introduction to PySpark : from transformations and actions to performance--using the Spark Python API /
Publié: (2016)