Cargando…

Optimizing Databricks Workloads

Accelerate computations and make the most of your data effectively and efficiently on Databricks Key Features Understand Spark optimizations for big data workloads and maximizing performance Build efficient big data engineering pipelines with Databricks and Delta Lake Efficiently manage Spark cluste...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kala, Anirudh (Autor), Bhatnagar, Anshul (Autor), Sarbahi, Sarthak (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1291870992
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 220113s2021 xx o 000 0 eng d
040 |a AU@  |b eng  |c AU@  |d ORMDA  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO 
020 |z 9781801819077 
020 |z 9781801811927 
024 8 |a 9781801819077 
029 0 |a AU@  |b 000070439475 
029 1 |a AU@  |b 000070288538 
035 |a (OCoLC)1291870992 
037 |a 9781801819077  |b O'Reilly Media 
050 4 |a QA76.9.B45 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Kala, Anirudh,  |e author. 
245 1 0 |a Optimizing Databricks Workloads  |h [electronic resource] /  |c Kala, Anirudh. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2021. 
300 |a 1 online resource (230 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Accelerate computations and make the most of your data effectively and efficiently on Databricks Key Features Understand Spark optimizations for big data workloads and maximizing performance Build efficient big data engineering pipelines with Databricks and Delta Lake Efficiently manage Spark clusters for big data processing Book Description Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently. What you will learn Get to grips with Spark fundamentals and the Databricks platform Process big data using the Spark DataFrame API with Delta Lake Analyze data using graph processing in Databricks Use MLflow to manage machine learning life cycles in Databricks Find out how to choose the right cluster configuration for your workloads Explore file compaction and clustering methods to tune Delta tables Discover advanced optimization techniques to speed up Spark jobs Who this book is for This book is for data engineers, data scientists, and cloud architects who have working knowledge of Spark/Databricks and some basic understanding of data engineering principles. Readers will need to have a working knowledge of Python, and some experience of SQL in PySpark and Spark SQL is beneficial. 
542 |f Copyright © 2021 Packt Publishing  |g 2021 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed December 24, 2021) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Big data. 
650 0 |a Microsoft Azure (Computing platform) 
650 6 |a Données volumineuses. 
650 6 |a Microsoft Azure (Plateforme informatique) 
650 7 |a Big data  |2 fast 
650 7 |a Microsoft Azure (Computing platform)  |2 fast 
700 1 |a Bhatnagar, Anshul,  |e author. 
700 1 |a Sarbahi, Sarthak,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801819077/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP