Model Performance Management with Explainable AI
Artificial intelligence has the potential to provide productive, efficient, and innovative solutions to everyday problems. But it comes with risks. Multiple examples of alleged bias in AI have been reported in recent years, and many people were already affected by the time those issues surfaced. Thi...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Paka, Amit (Autor), Gade, Krishna (Autor), Farah, Danny (Autor) |
Autor Corporativo: | Safari, an O'Reilly Media Company |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
O'Reilly Media, Inc.,
2021.
|
Edición: | 1st edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Towards sustainable artificial intelligence : a framework to create value and understand risk /
por: Chetsa, Ghislain Landry Tsafack
Publicado: (2021) -
Algorithmen, Kampfroboter und Psychosen : Hintergründe und Gefahren artifizieller Intelligenz : Rekonstruktion psychotischer Technologie /
por: Bobanović, Denis
Publicado: (2019) -
A practical guide toward explainability and bias evaluation in AI and machine learning /
Publicado: (2019) -
ARTIFICIAL INTELLIGENCE TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING
Publicado: (2022) -
AI on the front lines : AI progress can stall when end users resist adoption : developers must think beyond a project's business benefits and ensure that end users' workflow concerns are addressed /
por: Kellogg, Katherine C., et al.
Publicado: (2022)