Cargando…

Matrix and tensor decompositions in signal processing /

The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decom...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Favier, Gérard (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE, Ltd. ; Wiley, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1269508540
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 210929s2021 enka ob 001 0 eng d
040 |a DG1  |b eng  |e rda  |e pn  |c DG1  |d DG1  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d UPM  |d OCLCQ  |d LANGC  |d ORMDA  |d OCLCQ 
020 |a 9781119700999  |q (electronic bk. ;  |q oBook) 
020 |a 111970099X  |q (electronic bk.) 
020 |z 9781786301550 
020 |z 1786301555 
024 7 |a 10.1002/9781119700999  |2 doi 
029 1 |a AU@  |b 000069973436 
035 |a (OCoLC)1269508540 
037 |a 9781786301550  |b O'Reilly Media 
050 4 |a TK5102.9 
082 0 4 |a 621.38220151  |2 23 
049 |a UAMI 
100 1 |a Favier, Gérard,  |e author. 
245 1 0 |a Matrix and tensor decompositions in signal processing /  |c Gérard Favier. 
264 1 |a London :  |b ISTE, Ltd. ;  |a Hoboken, NJ :  |b Wiley,  |c 2021. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Signal processing  |x Digital techniques  |x Mathematics. 
650 0 |a Computer algorithms. 
650 0 |a Calculus of tensors. 
650 0 |a Matrices. 
650 0 |a Algorithms. 
650 6 |a Traitement du signal  |x Techniques numériques  |x Mathématiques. 
650 6 |a Algorithmes. 
650 6 |a Calcul tensoriel. 
650 6 |a Matrices. 
650 7 |a algorithms.  |2 aat 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Calculus of tensors.  |2 fast  |0 (OCoLC)fst00844137 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Matrices.  |2 fast  |0 (OCoLC)fst01012399 
650 7 |a Signal processing  |x Digital techniques  |x Mathematics.  |2 fast  |0 (OCoLC)fst01118294 
776 0 8 |i Print version:  |a Favier, Gérard.  |t Matrix and tensor decompositions in signal processing.  |d London : Wiley-ISTE, 2018  |z 9781786301550  |w (OCoLC)1064694487 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786301550/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP