Cargando…

Data engineering on Azure /

In Data Engineering on Azure you'll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you'll set up efficien...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Riscutia, Vlad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shelter Island, NY : Manning, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1269222717
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 210927s2021 nyu o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d EBLCP  |d AU@  |d VT2  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ 
019 |a 1264468428  |a 1268279456  |a 1281713766  |a 1286904394 
020 |a 9781638356912  |q (electronic bk.) 
020 |a 1638356912  |q (electronic bk.) 
020 |a 1617298921 
020 |a 9781617298929 
020 |z 9781617298929 
024 8 |a 9781617298929 
029 1 |a AU@  |b 000069849257 
035 |a (OCoLC)1269222717  |z (OCoLC)1264468428  |z (OCoLC)1268279456  |z (OCoLC)1281713766  |z (OCoLC)1286904394 
050 4 |a QA76.9.D3 
082 0 4 |a 005.75/65  |2 23 
049 |a UAMI 
100 1 |a Riscutia, Vlad,  |e author. 
245 1 0 |a Data engineering on Azure /  |c Vlad Riscutia. 
264 1 |a Shelter Island, NY :  |b Manning,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed September 28, 2021). 
505 0 |a Intro -- inside front cover -- Data Platform Architecture -- Data Engineering on Azure -- Copyright -- dedication -- brief contents -- contents -- front matter -- preface -- acknowledgments -- about this book -- about the author -- about the cover illustration -- 1 Introduction -- 1.1 What is data engineering? -- 1.2 Who this book is for -- 1.3 What is a data platform? -- 1.3.1 Anatomy of a data platform -- 1.3.2 Infrastructure as code, codeless infrastructure -- 1.4 Building in the cloud -- 1.4.1 IaaS, PaaS, SaaS -- 1.4.2 Network, storage, compute -- 1.4.3 Getting started with Azure 
505 8 |a 1.4.4 Interacting with Azure -- 1.5 Implementing an Azure data platform -- Summary -- Part 1 Infrastructure -- 2 Storage -- 2.1 Storing data in a data platform -- 2.1.1 Storing data across multiple data fabrics -- 2.1.2 Having a single source of truth -- 2.2 Introducing Azure Data Explorer -- 2.2.1 Deploying an Azure Data Explorer cluster -- 2.2.2 Using Azure Data Explorer -- 2.2.3 Working around query limits -- 2.3 Introducing Azure Data Lake Storage -- 2.3.1 Creating an Azure Data Lake Storage account -- 2.3.2 Using Azure Data Lake Storage -- 2.3.3 Integrating with Azure Data Explorer 
505 8 |a 2.4 Ingesting data -- 2.4.1 Ingestion frequency -- 2.4.2 Load type -- 2.4.3 Restatements and reloads -- Summary -- 3 DevOps -- 3.1 What is DevOps? -- 3.1.1 DevOps in data engineering -- 3.2 Introducing Azure DevOps -- 3.2.1 Using the az azure-devops extension -- 3.3 Deploying infrastructure -- 3.3.1 Exporting an Azure Resource Manager template -- 3.3.2 Creating Azure DevOps service connections -- 3.3.3 Deploying Azure Resource Manager templates -- 3.3.4 Understanding Azure Pipelines -- 3.4 Deploying analytics -- 3.4.1 Using Azure DevOps marketplace extensions -- 3.4.2 Storing everything in Git 
505 8 |a Deploying everything automatically -- Summary -- 4 Orchestration -- 4.1 Ingesting the Bing COVID-19 open dataset -- 4.2 Introducing Azure Data Factory -- 4.2.1 Setting up the data source -- 4.2.2 Setting up the data sink -- 4.2.3 Setting up the pipeline -- 4.2.4 Setting up a trigger -- 4.2.5 Orchestrating with Azure Data Factory -- 4.3 DevOps for Azure Data Factory -- 4.3.1 Deploying Azure Data Factory from Git -- 4.3.2 Setting up access control -- 4.3.3 Deploying the production data factory -- 4.3.4 DevOps for the Azure Data Factory recap -- 4.4 Monitoring with Azure Monitor -- Summary 
505 8 |a Part 2 Workloads -- 5 Processing -- 5.1 Data modeling techniques -- 5.1.1 Normalization and denormalization -- 5.1.2 Data warehousing -- 5.1.3 Semistructured data -- 5.1.4 Data modeling recap -- 5.2 Identity keyrings -- 5.2.1 Building an identity keyring -- 5.2.2 Understanding keyrings -- 5.3 Timelines -- 5.3.1 Building a timeline view -- 5.3.2 Using timelines -- 5.4 Continuous data processing -- 5.4.1 Tracking processing functions in Git -- 5.4.2 Keyring building in Azure Data Factory -- 5.4.3 Scaling out -- Summary -- 6 Analytics -- 6.1 Structuring storage -- 6.1.1 Providing development data 
520 |a In Data Engineering on Azure you'll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you'll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. 
542 |f © 2021 Manning Publications Co. All rights reserved.  |g 2021 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft Azure SQL Database. 
630 0 7 |a Microsoft Azure SQL Database.  |2 fast  |0 (OCoLC)fst01937996 
650 0 |a Database management. 
650 0 |a Cloud computing. 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Infonuagique. 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
776 0 8 |i Print version:  |a Riscutia, Vlad.  |t Data Engineering on Azure.  |d New York : Manning Publications Co. LLC, ©2021  |z 9781617298929 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617298929/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39609428 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6706527 
938 |a EBSCOhost  |b EBSC  |n 2966135 
994 |a 92  |b IZTAP