|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1250079404 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210508s2021 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d YDX
|d NLW
|d UKAHL
|d N$T
|d YDX
|d OCLCF
|d OCLCO
|d UKMGB
|d CZL
|d OCLCO
|d OCLCQ
|d IEEEE
|d OCLCO
|
015 |
|
|
|a GBC206097
|2 bnb
|
016 |
7 |
|
|a 020190163
|2 Uk
|
019 |
|
|
|a 1250201058
|
020 |
|
|
|a 1800208502
|q (electronic book)
|
020 |
|
|
|a 9781800208506
|q (electronic book)
|
020 |
|
|
|z 1800200889
|
020 |
|
|
|z 9781800200883
|
029 |
1 |
|
|a UKMGB
|b 020190163
|
035 |
|
|
|a (OCoLC)1250079404
|z (OCoLC)1250201058
|
037 |
|
|
|a 9781800208506
|b Packt Publishing
|
037 |
|
|
|a 10163291
|b IEEE
|
050 |
|
4 |
|a Q335
|b .B33 2021
|
082 |
0 |
4 |
|a 006.3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Babcock, Joseph,
|e author.
|
245 |
1 |
0 |
|a Generative AI with Python and TensorFlow 2 :
|b harness the power of generative models to create images, text, and music /
|c Joseph Babcock, Raghav Bali.
|
264 |
|
1 |
|a Birmingham :
|b Packt Publishing, Limited,
|c 2021.
|
300 |
|
|
|a 1 online resource (489 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (viewed Janurary 3, 2022).
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Packed with intriguing real-world projects as well as theory, Generative AI with Python and TensorFlow 2 enables you to leverage artificial intelligence creatively and generate human-like data in the form of speech, text, images, and music.
|
505 |
0 |
|
|a Home -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: An Introduction to Generative AI: "Drawing" Data from Models -- Applications of AI -- Discriminative and generative models -- Implementing generative models -- The rules of probability -- Discriminative and generative modeling and Bayes' theorem -- Why use generative models? -- The promise of deep learning -- Building a better digit classifier -- Generating images -- Style transfer and image transformation -- Fake news and chatbots -- Sound composition -- The rules of the game -- Unique challenges of generative models -- Summary -- References -- Chapter 2: Setting Up a TensorFlow Lab -- Deep neural network development and TensorFlow -- TensorFlow 2.0 -- VSCode -- Docker: A lightweight virtualization solution -- Important Docker commands and syntax -- Connecting Docker containers with docker-compose -- Kubernetes: Robust management of multi-container applications -- Important Kubernetes commands -- Kustomize for configuration management -- Kubeflow: an end-to-end machine learning lab -- Running Kubeflow locally with MiniKF -- Installing Kubeflow in AWS -- Installing Kubeflow in GCP -- Installing Kubeflow on Azure -- Installing Kubeflow using Terraform -- A brief tour of Kubeflow's components -- Kubeflow notebook servers -- Kubeflow pipelines -- Using Kubeflow Katib to optimize model hyperparameters -- Summary -- References -- Chapter 3: Building Blocks of Deep Neural Networks -- Perceptrons -- a brain in a function -- From tissues to TLUs -- From TLUs to tuning perceptrons -- Multi-layer perceptrons and backpropagation -- Backpropagation in practice -- The shortfalls of backpropagation -- Varieties of networks: Convolution and recursive -- Networks for seeing: Convolutional architectures -- Early CNNs -- AlexNet and other CNN innovations -- AlexNet architecture.
|
505 |
8 |
|
|a Networks for sequence data -- RNNs and LSTMs -- Building a better optimizer -- Gradient descent to ADAM -- Xavier initialization -- Summary -- References -- Chapter 4: Teaching Networks to Generate Digits -- The MNIST database -- Retrieving and loading the MNIST dataset in TensorFlow -- Restricted Boltzmann Machines: generating pixels with statistical mechanics -- Hopfield networks and energy equations for neural networks -- Modeling data with uncertainty with Restricted Boltzmann Machines -- Contrastive divergence: Approximating a gradient -- Stacking Restricted Boltzmann Machines to generate images: the Deep Belief Network -- Creating an RBM using the TensorFlow Keras layers API -- Creating a DBN with the Keras Model API -- Summary -- References -- Chapter 5: Painting Pictures with Neural Networks Using VAEs -- Creating separable encodings of images -- The variational objective -- The reparameterization trick -- Inverse Autoregressive Flow -- Importing CIFAR -- Creating the network from TensorFlow 2 -- Summary -- References -- Chapter 6: Image Generation with GANs -- The taxonomy of generative models -- Generative adversarial networks -- The generator model -- Training GANs -- Non-saturating generator cost -- Maximum likelihood game -- Vanilla GAN -- Improved GANs -- Deep Convolutional GAN -- Vector arithmetic -- Conditional GAN -- Wasserstein GAN -- Progressive GAN -- The overall method -- Progressive growth-smooth fade-in -- Minibatch standard deviation -- Equalized learning rate -- Pixelwise normalization -- TensorFlow Hub implementation -- Challenges -- Training instability -- Mode collapse -- Uninformative loss and evaluation metrics -- Summary -- References -- Chapter 7: Style Transfer with GANs -- Paired style transfer using pix2pix GAN -- The U-Net generator -- The Patch-GAN discriminator -- Loss -- Training pix2pix -- Use cases.
|
505 |
8 |
|
|a Unpaired style transfer using CycleGAN -- Overall setup for CycleGAN -- Adversarial loss -- Cycle loss -- Identity loss -- Overall loss -- Hands-on: Unpaired style transfer with CycleGAN -- Generator setup -- Discriminator setup -- GAN setup -- The training loop -- Related works -- DiscoGAN -- DualGAN -- Summary -- References -- Chapter 8: Deepfakes with GANs -- Deepfakes overview -- Modes of operation -- Replacement -- Re-enactment -- Editing -- Key feature set -- Facial Action Coding System (FACS) -- 3D Morphable Model -- Facial landmarks -- Facial landmark detection using OpenCV -- Facial landmark detection using dlib -- Facial landmark detection using MTCNN -- High-level workflow -- Common architectures -- Encoder-Decoder (ED) -- Generative Adversarial Networks (GANs) -- Replacement using autoencoders -- Task definition -- Dataset preparation -- Autoencoder architecture -- Training our own face swapper -- Results and limitations -- Re-enactment using pix2pix -- Dataset preparation -- Pix2pix GAN setup and training -- Results and limitations -- Challenges -- Ethical issues -- Technical challenges -- Generalization -- Occlusions -- Temporal issues -- Off-the-shelf implementations -- Summary -- References -- Chapter 9: The Rise of Methods for Text Generation -- Representing text -- Bag of Words -- Distributed representation -- Word2vec -- GloVe -- FastText -- Text generation and the magic of LSTMs -- Language modeling -- Hands-on: Character-level language model -- Decoding strategies -- Greedy decoding -- Beam search -- Sampling -- Hands-on: Decoding strategies -- LSTM variants and convolutions for text -- Stacked LSTMs -- Bidirectional LSTMs -- Convolutions and text -- Summary -- References -- Chapter 10: NLP 2.0: Using Transformers to Generate Text -- Attention -- Contextual embeddings -- Self-attention -- Transformers -- Overall architecture.
|
505 |
8 |
|
|a Multi-head self-attention -- Positional encodings -- BERT-ology -- GPT 1, 2, 3 ... -- Generative pre-training: GPT -- GPT-2 -- Hands-on with GPT-2 -- Mammoth GPT-3 -- Summary -- References -- Chapter 11: Composing Music with Generative Models -- Getting started with music generation -- Representing music -- Music generation using LSTMs -- Dataset preparation -- LSTM model for music generation -- Music generation using GANs -- Generator network -- Discriminator network -- Training and results -- MuseGAN -- polyphonic music generation -- Jamming model -- Composer model -- Hybrid model -- Temporal model -- MuseGAN -- Generators -- Critic -- Training and results -- Summary -- References -- Chapter 12: Play Video Games with Generative AI: GAIL -- Reinforcement learning: Actions, agents, spaces, policies, and rewards -- Deep Q-learning -- Inverse reinforcement learning: Learning from experts -- Adversarial learning and imitation -- Running GAIL on PyBullet Gym -- The agent: Actor-Critic network -- The discriminator -- Training and results -- Summary -- References -- Chapter 13: Emerging Applications in Generative AI -- Introduction -- Finding new drugs with generative models -- Searching chemical space with generative molecular graph networks -- Folding proteins with generative models -- Solving partial differential equations with generative modeling -- Few shot learning for creating videos from images -- Generating recipes with deep learning -- Summary -- References -- Other Books You May Enjoy -- Index.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern perception.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
6 |
|a Perception des structures.
|
650 |
|
6 |
|a Vision par ordinateur.
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a Artificial intelligence.
|2 bicssc
|
650 |
|
7 |
|a Neural networks & fuzzy systems.
|2 bicssc
|
650 |
|
7 |
|a Pattern recognition.
|2 bicssc
|
650 |
|
7 |
|a Computer vision.
|2 bicssc
|
650 |
|
7 |
|a Computers
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Computer Vision & Pattern Recognition.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Neural Networks.
|2 bisacsh
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|
650 |
|
7 |
|a Computer vision
|2 fast
|
650 |
|
7 |
|a Pattern perception
|2 fast
|
700 |
1 |
|
|a Bali, Raghav.
|
776 |
0 |
8 |
|i Print version:
|a Babcock, Joseph.
|t Generative AI with Python and TensorFlow 2.
|d Birmingham : Packt Publishing, Limited, ©2021
|z 9781800200883
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781800200883/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38618608
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6587289
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2923092
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302162613
|
994 |
|
|
|a 92
|b IZTAP
|