Cargando…

Engineering MLOps : rapidly build, test, and manage production-ready machine learning life cycles at scale /

Engineering MLOps will help you get to grips with ML lifecycle management and MLOps implementation for your organization. This book presents comprehensive insights into MLOps coupled with real-world examples that will teach you how to write programs, train robust and scalable ML models, and build ML...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Raj, Emmanuel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1250073688
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 210508s2021 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d UKMGB  |d OCLCO  |d N$T  |d OCLCO  |d OCLCQ  |d IEEEE  |d YDX 
015 |a GBC166358  |2 bnb 
016 7 |a 020174288  |2 Uk 
020 |a 1800566328 
020 |a 9781800566323  |q (electronic bk.) 
020 |z 9781800562882 (pbk.) 
029 1 |a UKMGB  |b 020174288 
035 |a (OCoLC)1250073688 
037 |a 9781800566323  |b Packt Publishing 
037 |a 10162573  |b IEEE 
050 4 |a Q325.5  |b .R35 2021 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Raj, Emmanuel,  |e author. 
245 1 0 |a Engineering MLOps :  |b rapidly build, test, and manage production-ready machine learning life cycles at scale /  |c Emmanuel Raj. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c 2021. 
300 |a 1 online resource (370 p.) 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
500 |a Description based upon print version of record. 
520 |a Engineering MLOps will help you get to grips with ML lifecycle management and MLOps implementation for your organization. This book presents comprehensive insights into MLOps coupled with real-world examples that will teach you how to write programs, train robust and scalable ML models, and build ML pipelines to train, deploy, and monitor ... 
505 0 |a Table of Contents Fundamentals of MLOps Workflow Characterizing your Machine learning problem Code Meets Data Machine Learning Pipelines Model evaluation and packaging Key principles for deploying your ML system Building robust CI and CD pipelines APIs and microservice Management Testing and Securing Your ML Solution Essentials of Production Release Key principles for monitoring your ML system Model Serving and Monitoring Governing the ML system for Continual Learning. 
588 0 |a Online resource; title from PDF title page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Computer programs. 
650 6 |a Apprentissage automatique  |x Logiciels. 
776 0 8 |i Print version:  |a Raj, Emmanuel  |t Engineering MLOps  |d Birmingham : Packt Publishing, Limited,c2021  |z 9781800562882 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800562882/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6562518 
938 |a EBSCOhost  |b EBSC  |n 2913887 
994 |a 92  |b IZTAP