Cargando…

Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /

This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Amr, Tarek (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, Limited, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1201697326
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 201027t20202020enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d YDXIT  |d OCLCF  |d OCLCO  |d YDX  |d EBLCP  |d UKAHL  |d UKMGB  |d N$T  |d OCLCQ  |d OCLCO  |d NLSHB  |d OCLCQ 
015 |a GBC094833  |2 bnb 
016 7 |a 019859997  |2 Uk 
019 |a 1180969905  |a 1181834366  |a 1197737347 
020 |a 9781838823580  |q (electronic book) 
020 |a 1838823581  |q (electronic book) 
020 |z 9781838826048 
029 1 |a AU@  |b 000067830201 
029 1 |a UKMGB  |b 019859997 
029 1 |a AU@  |b 000067834739 
035 |a (OCoLC)1201697326  |z (OCoLC)1180969905  |z (OCoLC)1181834366  |z (OCoLC)1197737347 
037 |a CL0501000160  |b Safari Books Online 
050 4 |a Q325.5  |b .A57 2020 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Amr, Tarek,  |e author. 
245 1 0 |a Hands-on machine learning with scikit-learn and scientific Python toolkits :  |b a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /  |c Tarek Amr. 
264 1 |a Birmingham, UK :  |b Packt Publishing, Limited,  |c 2020. 
264 4 |c ©2020 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from digital title page (viewed on November 23, 2020). 
505 0 |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate 
505 8 |a Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data 
505 8 |a Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors 
505 8 |a Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features 
505 8 |a Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary 
520 |a This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 1 7 |a Python (programmeertaal).  |2 nbdbt 
776 0 8 |i Print version:  |a Amr, Tarek.  |t Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python.  |d Birmingham : Packt Publishing, Limited, ©2020 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838826048/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37504100 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6270729 
938 |a EBSCOhost  |b EBSC  |n 2562942 
938 |a YBP Library Services  |b YANK  |n 16873209 
994 |a 92  |b IZTAP