|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1201697326 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
201027t20202020enka o 000 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d UMI
|d YDXIT
|d OCLCF
|d OCLCO
|d YDX
|d EBLCP
|d UKAHL
|d UKMGB
|d N$T
|d OCLCQ
|d OCLCO
|d NLSHB
|d OCLCQ
|
015 |
|
|
|a GBC094833
|2 bnb
|
016 |
7 |
|
|a 019859997
|2 Uk
|
019 |
|
|
|a 1180969905
|a 1181834366
|a 1197737347
|
020 |
|
|
|a 9781838823580
|q (electronic book)
|
020 |
|
|
|a 1838823581
|q (electronic book)
|
020 |
|
|
|z 9781838826048
|
029 |
1 |
|
|a AU@
|b 000067830201
|
029 |
1 |
|
|a UKMGB
|b 019859997
|
029 |
1 |
|
|a AU@
|b 000067834739
|
035 |
|
|
|a (OCoLC)1201697326
|z (OCoLC)1180969905
|z (OCoLC)1181834366
|z (OCoLC)1197737347
|
037 |
|
|
|a CL0501000160
|b Safari Books Online
|
050 |
|
4 |
|a Q325.5
|b .A57 2020
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Amr, Tarek,
|e author.
|
245 |
1 |
0 |
|a Hands-on machine learning with scikit-learn and scientific Python toolkits :
|b a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /
|c Tarek Amr.
|
264 |
|
1 |
|a Birmingham, UK :
|b Packt Publishing, Limited,
|c 2020.
|
264 |
|
4 |
|c ©2020
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on November 23, 2020).
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate
|
505 |
8 |
|
|a Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data
|
505 |
8 |
|
|a Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors
|
505 |
8 |
|
|a Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features
|
505 |
8 |
|
|a Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary
|
520 |
|
|
|a This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
650 |
1 |
7 |
|a Python (programmeertaal).
|2 nbdbt
|
776 |
0 |
8 |
|i Print version:
|a Amr, Tarek.
|t Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python.
|d Birmingham : Packt Publishing, Limited, ©2020
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781838826048/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37504100
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6270729
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2562942
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16873209
|
994 |
|
|
|a 92
|b IZTAP
|