Cargando…

A practical guide to algorithmic bias and explainability in machine learning /

"The concepts of "undesired bias" and "black box models" in machine learning have become a highly discussed topic due to the numerous high profile incidents that have been covered by the media. It's certainly a challenging topic, as it could even be said that the concep...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Strata Data Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1176539811
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200724s2020 xx 041 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCO  |d OCLCQ 
035 |a (OCoLC)1176539811 
037 |a CL0501000126  |b Safari Books Online 
050 4 |a T57.5 
049 |a UAMI 
100 1 |a Saucedo, Alejandro,  |e on-screen presenter. 
245 1 2 |a A practical guide to algorithmic bias and explainability in machine learning /  |c Alejandro Saucedo. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2020. 
300 |a 1 online resource (1 streaming video file (40 min., 48 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (viewed July 23, 2020). 
500 |a This session is from the 2019 O'Reilly Strata Conference in New York, NY. 
511 0 |a Presenter, Alejandro Saucedo. 
520 |a "The concepts of "undesired bias" and "black box models" in machine learning have become a highly discussed topic due to the numerous high profile incidents that have been covered by the media. It's certainly a challenging topic, as it could even be said that the concept of societal bias is inherently biased in itself, depending on an individual's (or group's) perspective. Alejandro Saucedo (The Institute for Ethical AI & Machine Learning) doesn't reinvent the wheel; he simplifies the issue of AI explainability so it can be solved using traditional methods. He covers the high-level definitions of bias in machine learning to remove ambiguity and demystifies it through a hands-on example, in which the objective is to automate the loan-approval process for a company using machine learning, which allows you to go through this challenge step by step and use key tools and techniques from the latest research together with domain expert knowledge at the right points to enable you to explain decisions and mitigate undesired bias in machine learning models."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Electronic data processing  |v Congresses. 
650 0 |a Machine learning. 
650 0 |a Data structures (Computer science)  |v Congresses. 
650 0 |a Cloud computing  |v Congresses. 
650 0 |a Artificial intelligence  |v Congresses. 
650 6 |a Apprentissage automatique. 
650 6 |a Structures de données (Informatique)  |v Congrès. 
650 6 |a Infonuagique  |v Congrès. 
650 6 |a Intelligence artificielle  |v Congrès. 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Cloud computing  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Data structures (Computer science)  |2 fast  |0 (OCoLC)fst00887978 
650 7 |a Electronic data processing  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
711 2 |a O'Reilly Strata Data Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920372370/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP