Random search and reproducibility for neural architecture search /
"Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. Ameet Talwalkar (Carnegie Mellon University | Determined AI) shares work that aims to help ground the empirical results in th...
Cote: | Libro Electrónico |
---|---|
Collectivité auteur: | O'Reilly Artificial Intelligence Conference |
Format: | Électronique Actes de congrès Vidéo |
Langue: | Inglés |
Publié: |
[Place of publication not identified] :
O'Reilly,
2019.
|
Sujets: | |
Accès en ligne: | Texto completo (Requiere registro previo con correo institucional) |
Documents similaires
-
Neural networks with Keras cookbook : over 70 recipes leveraging deep learning techniques across image, text, audio, and game bots /
par: Ayyadevara, V. Kishore
Publié: (2019) -
Learn Keras for deep neural networks : a fast-track approach to modern deep learning with Python /
par: Moolayil, Jojo
Publié: (2019) -
Hands-on neural networks with TensorFlow 2.0 : train, model and deploy the neural networks into your systems using the power of TensorFlow 2.0 /
par: Galeone, Paolo
Publié: (2019) -
Artificial neural networks with TensorFlow 2 : ANN architecture machine learning projects /
par: Sarang, P. G. (Poornachandra G.)
Publié: (2021) -
Deep neural networks and applications
par: Stanimirović, Ivan
Publié: (2020)