Cargando…

Practical data science with Python 3 : synthesizing actionable insights from data /

Gain insight into essential data science skills in a holistic manner using data engineering and associated scalable computational methods. This book covers the most popular Python 3 frameworks for both local and distributed (in premise and cloud based) processing. Along the way, you will be introduc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Varga, Ervin (Professional software engineer) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1120719742
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 190923t20192019cauab ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d EBLCP  |d LQU  |d UKMGB  |d OCLCF  |d OCLCA  |d OCLCQ  |d UMI  |d SFB  |d N$T  |d OCLCQ  |d VT2  |d TEFOD  |d COO  |d OCLCQ  |d UKAHL  |d BRF  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d FTB  |d DCT  |d OCLCO 
015 |a GBB9G3421  |2 bnb 
016 7 |a 019543107  |2 Uk 
019 |a 1119616292  |a 1121273654  |a 1123173052  |a 1125804202  |a 1129367823  |a 1136266869  |a 1138954423  |a 1153824972  |a 1162797549  |a 1204055559 
020 |a 9781484248591  |q electronic book 
020 |a 1484248597  |q electronic book 
020 |z 9781484248584  |q print 
020 |z 1484248589  |q print 
020 |z 9781484248607  |q print 
020 |z 1484248600  |q print 
024 7 |a 10.1007/978-1-4842-4859-1  |2 doi 
024 8 |a 10.1007/978-1-4842-4 
029 1 |a AU@  |b 000066120458 
029 1 |a AU@  |b 000066123917 
029 1 |a AU@  |b 000066233301 
029 1 |a AU@  |b 000067370011 
029 1 |a UKMGB  |b 019543107 
029 1 |a AU@  |b 000074028164 
035 |a (OCoLC)1120719742  |z (OCoLC)1119616292  |z (OCoLC)1121273654  |z (OCoLC)1123173052  |z (OCoLC)1125804202  |z (OCoLC)1129367823  |z (OCoLC)1136266869  |z (OCoLC)1138954423  |z (OCoLC)1153824972  |z (OCoLC)1162797549  |z (OCoLC)1204055559 
037 |a com.springer.onix.9781484248591  |b Springer Nature 
037 |a 97E0B7CB-366A-48E5-AC37-9BE2FE5D61C8  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D343  |b V37 2019 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Varga, Ervin  |c (Professional software engineer),  |e author. 
245 1 0 |a Practical data science with Python 3 :  |b synthesizing actionable insights from data /  |c Ervin Varga. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (xvii, 462 pages) :  |b illustrations (chiefly color), maps (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
520 |a Gain insight into essential data science skills in a holistic manner using data engineering and associated scalable computational methods. This book covers the most popular Python 3 frameworks for both local and distributed (in premise and cloud based) processing. Along the way, you will be introduced to many popular open-source frameworks, like, SciPy, scikitlearn, Numba, Apache Spark, etc. The book is structured around examples, so you will grasp core concepts via case studies and Python 3 code. As data science projects gets continuously larger and more complex, software engineering knowledge and experience is crucial to produce evolvable solutions. You'll see how to create maintainable software for data science and how to document data engineering practices. This book is a good starting point for people who want to gain practical skills to perform data science. All the code will be available in the form of IPython notebooks and Python 3 programs, which allow you to reproduce all analyses from the book and customize them for your own purpose. You'll also benefit from advanced topics like Machine Learning, Recommender Systems, and Security in Data Science. Practical Data Science with Python will empower you analyze data, formulate proper questions, and produce actionable insights, three core stages in most data science endeavors. 
504 |a Includes bibliographical references and index. 
588 |a Description based on online resource; title from digital title page (viewed on June 26, 2023). 
505 0 |a Chapter 1.Introduction to Data Science -- Chapter 2.Data Acquisition -- Chapter 3.Basic Data Processing -- Chapter 4.Documenting Work -- Chapter 5.Transformation and Packaging of Data -- Chapter 6.Visualization -- Chapter 7.Prediction and Inference -- Chapter 8.Network Analysis -- Chapter 9.Data Science Process Engineering -- Chapter 10. Multi-agent Systems, Game Theory and Machine Learning -- Chapter 11. Probabilistic Graphical Models -- Chapter 12. Security in Data Science. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Python (Computer program language) 
650 0 |a Computer programming. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Programmation (Informatique) 
650 7 |a computer programming.  |2 aat 
650 7 |a Data mining  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |a Varga, Ervin.  |t Practical Data Science with Python 3 : Synthesizing Actionable Insights from Data.  |d Berkeley, CA : Apress L.P., ©2019  |z 9781484248584 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484248591/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36710601 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5893157 
938 |a EBSCOhost  |b EBSC  |n 2246827 
994 |a 92  |b IZTAP