Cargando…

Deep learning from scratch : building with Python from first principles /

With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weidman, Seth (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2019.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1119738856
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190918s2019 caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781492041412 
035 |a (OCoLC)1119738856 
037 |a CL0501000071  |b Safari Books Online 
050 4 |a QA76.73.P98 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Weidman, Seth,  |e author. 
245 1 0 |a Deep learning from scratch :  |b building with Python from first principles /  |c Seth Weidman. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed September 16, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1. Foundations -- Chapter 2. Fundamentals -- Chapter 3. Deep Learning from Scratch -- Chapter 4. Extensions -- Chapter 5. Convolutional Neural Networks -- Chapter 6. Recurrent Neural Networks -- Chapter 7. PyTorch -- Appendix A. Deep Dives. 
520 |a With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. You'll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you'll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental models--accompanied by working code examples and mathematical explanations--for understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework.--Provided by publisher. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492041405/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP