Cargando…

Machine Learning with Microsoft Technologies : Selecting the Right Architecture and Tools for Your Project /

Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more. The ability to analyze massive amounts of real-t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Etaati, Leila (Autor, http://id)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint : Apress, 2019.
Edición:1st ed. 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1110720934
003 OCoLC
005 20231017213018.0
006 m o d
007 cr nnu|||mamaa
008 190612s2019 caua ob 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d UMI  |d OCLCF  |d YDX  |d OCLCQ  |d CUV  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1104921608  |a 1108874744 
020 |a 1484236580 
020 |a 9781484236581 
020 |z 1484236572 
020 |z 9781484236574 
024 7 |a 10.1007/978-1-4842-3658-1  |2 doi 
029 0 |a AU@  |b 000065669510 
029 1 |a AU@  |b 000065447142 
035 |a (OCoLC)1110720934  |z (OCoLC)1104921608  |z (OCoLC)1108874744 
037 |a CL0501000060  |b Safari Books Online 
050 4 |a QA76.76.M52 
072 7 |a UMP  |2 bicssc 
072 7 |a COM051380  |2 bisacsh 
072 7 |a UMP  |2 thema 
082 0 4 |a 004.165  |2 23 
049 |a UAMI 
100 1 |a Etaati, Leila.,  |e author  |4 aut  |4 http://id 
245 1 0 |a Machine Learning with Microsoft Technologies :  |b Selecting the Right Architecture and Tools for Your Project /  |c by Leila Etaati. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint :  |b Apress,  |c 2019. 
300 |a 1 online resource (XV, 365 pages 365 illustrations, 356 illustrations in color.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Part I: Getting Started -- Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to R -- Chapter 3: Introduction to Python -- Chapter 4: R Visualization in Power BI -- Part II: Machine Learning in R and Power BI -- Chapter 5: Business Understanding -- Chapter 6: Data Wrangling for Predictive Analysis -- Chapter 7: Predictive Analysis in Power Query with R -- Chapter 8: Descriptive Analysis in Power Query with R -- Part III: Machine Learning SQL Server -- Chapter 9: Using R with SQL Server 2016 and 2017 -- Chapter 10: Azure Databricks -- Part IV: Machine Learning in Azure -- Chapter 11: R in Azure Data Lake -- Chapter 12: Azure Machine Learning Studio -- Chapter 13: Machine Learning in Azure Stream Analytics -- Chapter 14: Azure Machine Learning (ML) Workbench -- Chapter 15: Machine Learning on HDInsight -- Chapter 16: Data Science Virtual Machine and AI Framework -- Chapter 17: Deep Learning Tools with Cognitive Toolkit (CNTK) -- Part V: Data Science Virtual Machine -- Chapter 18: Cognitive Service Toolkit -- Chapter 19: Bot Framework -- Chapter 20: Overview on Microsoft Machine Learning Tools. 
520 |a Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more. The ability to analyze massive amounts of real-time data and predict future behavior of an organization is critical to its long-term success. Data science, and more specifically machine learning (ML), is today's game changer and should be a key building block in every company's strategy. Managing a machine learning process from business understanding, data acquisition and cleaning, modeling, and deployment in each tool is a valuable skill set. Machine Learning with Microsoft Technologies is a demo-driven book that explains how to do machine learning with Microsoft technologies. You will gain valuable insight into designing the best architecture for development, sharing, and deploying a machine learning solution. This book simplifies the process of choosing the right architecture and tools for doing machine learning based on your specific infrastructure needs and requirements. Detailed content is provided on the main algorithms for supervised and unsupervised machine learning and examples show ML practices using both R and Python languages, the main languages inside Microsoft technologies. What You'll Learn: Choose the right Microsoft product for your machine learning solution Create and manage Microsoft's tool environments for development, testing, and production of a machine learning project Implement and deploy supervised and unsupervised learning in Microsoft products Set up Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, and HD Insight to perform machine learning Set up a data science virtual machine and test-drive installed tools, such as Azure ML Workbench, Azure ML Server Developer, Anaconda Python, Jupyter Notebook, Power BI Desktop, Cognitive Services, machine learning and data analytics tools, and more Architect a machine learning solution factoring in all aspects of self service, enterprise, deployment, and sharing This book is for data scientists, data analysts, developers, architects, and managers who want to leverage machine learning in their products, organization, and services, and make educated, cost-saving decisions about their ML architecture and tool set. Leila Etaati, PhD, is a Microsoft artificial intelligence and data platform MVP, speaker, trainer, and founding consultant with RADACAD where she trains and strategically advises some of today's largest global enterprises. Renowned in the field of AI and BI, she presents at many Microsoft events, including Ignite, Microsoft Data Insights Summit, PASS, and more. Leila is passionate about teaching others and resolving complex business solutions through the vast capabilities of machine learning and BI. She blogs and is author of Power BI and R through RADACAD. 
504 |a Includes bibliographical references. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft .NET Framework. 
630 0 7 |a Microsoft .NET Framework  |2 fast 
650 0 |a Microsoft software. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 6 |a Logiciels Microsoft. 
650 6 |a Intelligence artificielle. 
650 6 |a Python (Langage de programmation) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Microsoft software  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 |z 1484236572 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484236581/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 16289932 
994 |a 92  |b IZTAP