Cargando…

Understand, manage, and prevent algorithmic bias : a guide for business users and data scientists /

The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baer, Tobias (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York, NY] : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1104711482
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190615t20192019nyua ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d LQU  |d Z5A  |d GW5XE  |d YDXIT  |d UMI  |d UKMGB  |d OCLCF  |d DCT  |d LVT  |d OCLCQ  |d COO  |d OCLCQ  |d UKAHL  |d TEFOD  |d BRF  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d LUU  |d ORZ  |d OCLCQ 
015 |a GBB9C8637  |2 bnb 
016 7 |a 019436542  |2 Uk 
019 |a 1104304726  |a 1104469220  |a 1106164676  |a 1108655152  |a 1111069788  |a 1117808149 
020 |a 1484248856  |q (electronic book) 
020 |a 1484248848 
020 |a 9781484248843 
020 |a 9781484248850  |q (electronic book) 
024 8 |a 10.1007/978-1-4842-4 
029 1 |a AU@  |b 000065447182 
029 1 |a AU@  |b 000065450349 
029 1 |a UKMGB  |b 019436542 
035 |a (OCoLC)1104711482  |z (OCoLC)1104304726  |z (OCoLC)1104469220  |z (OCoLC)1106164676  |z (OCoLC)1108655152  |z (OCoLC)1111069788  |z (OCoLC)1117808149 
037 |a CL0501000059  |b Safari Books Online 
037 |a 7693719E-6319-4ACD-83AB-107A44925CA1  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q180.55.S7  |b B34 2019 
082 0 4 |a 001.4/33  |2 23 
049 |a UAMI 
100 1 |a Baer, Tobias,  |e author. 
245 1 0 |a Understand, manage, and prevent algorithmic bias :  |b a guide for business users and data scientists /  |c Tobias Baer. 
264 1 |a [New York, NY] :  |b Apress,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
520 |a The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias. In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors--and originates in--these human tendencies. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era. 
588 0 |a Online resource; title from digital title page (viewed on July 18, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Part I: An Introduction to Biases and Algorithms -- Chapter 1: Introduction -- Chapter 2: Bias in Human Decision-Making -- Chapter 3: How Algorithms Debias Decisions -- Chapter 4: The Model Development Process -- Chapter 5: Machine Learning in a Nutshell -- Part II: Where Does Algorithmic Bias Come From? -- Chapter 6: How Real World Biases Will Be Mirrored by Algorithms -- Chapter 7: Data Scientists' Biases -- Chapter 8: How Data Can Introduce Biases -- Chapter 9: The Stability Bias of Algorithms -- Chapter 10: Biases Introduced by the Algorithm Itself -- Chapter 11: Algorithmic Biases and Social Media -- Part III: What to Do About Algorithmic Bias from a User Perspective -- Chapter 12: Options for Decision-Making -- Chapter 13: Assessing the Risk of Algorithmic Bias -- Chapter 14: How to Use Algorithms Safely -- Chapter 15: How to Detect Algorithmic Biases -- Chapter 16: Managerial Strategies for Correcting Algorithmic Bias -- Chapter 17: How to Generate Unbiased Data -- Part IV: What to Do About Algorithmic Bias from a Data Scientist's Perspective -- Chapter 18: The Data Scientist's Role in Overcoming Algorithmic Bias -- Chapter 19: An X-Ray Exam of Your Data -- Chapter 20: When to Use Machine Learning with Traditional Methods -- Chapter 21: How to Marry Machine Learning with Traditional Methods -- Chapter 22: How to Prevent Bias in Self-Improving Models -- Chapter 23: How to Institutionalize Debiasing. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Research  |x Statistical methods. 
650 0 |a Machine learning  |x Social aspects. 
650 6 |a Recherche  |x Méthodes statistiques. 
650 6 |a Apprentissage automatique  |x Aspect social. 
650 7 |a Research  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01095242 
776 0 8 |i Print version:  |a Baer, Tobias.  |t Understand, Manage, and Prevent Algorithmic Bias : A Guide for Business Users and Data Scientists.  |d Berkeley, CA : Apress L.P., ©2019  |z 9781484248843 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484248850/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36547910 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5786722 
938 |a EBSCOhost  |b EBSC  |n 2156639 
938 |a YBP Library Services  |b YANK  |n 16276841 
994 |a 92  |b IZTAP