Cargando…

Strengthening Deep Neural Networks : Making AI Less Susceptible to Adversarial Trickery /

As Deep Neural Networks (DNNs) become increasingly common in real-world applications, the potential to "fool" them presents a new attack vector. In this book, author Katy Warr examines the security implications of how DNNs interpret audio and images very differently to humans. You'll...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Warr, Katy (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol : O'Reilly Media, Incorporated, 2019.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Part 1. An introduction to fooling AI. Introduction
  • Attack motivations
  • Deep neural network (DNN) fundamentals
  • DNN processing for image, audio, and video
  • Part 2. Generating adversarial input. The principles of adversarial input
  • Methods for generating adversarial perturbation
  • Part 3. Understanding the real-world threat. Attack patterns for real-world systems
  • Physical-world attacks
  • Part 4. Defense. Evaluating model robustness to adversarial inputs
  • Defending against adversarial inputs
  • Future trends : toward robust AI
  • Mathematics terminology reference.