Cargando…

Model-based processing : an applied subspace identification approach /

"Provides a model-based "bridge" for signal processors/control engineers enabling a coupling and motivation for model development and subsequent processor designs/applications - Incorporates an in-depth treatment of the subspace approach that applies a variety of the subspace algorith...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Candy, James V. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1057238048
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 181009t20192019njua ob 001 0 eng
010 |a  2018047949 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d DG1  |d N$T  |d YDX  |d RECBK  |d UKMGB  |d EBLCP  |d OCLCQ  |d SFB  |d K6U  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB938058  |2 bnb 
016 7 |a 019269532  |2 Uk 
016 |z 019269532 (print) 
019 |a 1090426790  |a 1090499652  |a 1090543366  |a 1090752829  |a 1090762750  |a 1164468969 
020 |a 9781119457770  |q (electronic book) 
020 |a 1119457777  |q (electronic book) 
020 |a 9781119457787  |q (electronic publication) 
020 |a 1119457785  |q (electronic publication) 
020 |a 9781119457695  |q (electronic book) 
020 |a 1119457696  |q (electronic book) 
020 |z 9781119457763  |q (hardcover) 
020 |z 1119457769 
024 7 |a 10.1002/9781119457695  |2 doi 
029 1 |a AU@  |b 000064319362 
029 1 |a CHNEW  |b 001048766 
029 1 |a CHVBK  |b 565571656 
029 1 |a UKMGB  |b 019269532 
029 1 |a AU@  |b 000068988727 
035 |a (OCoLC)1057238048  |z (OCoLC)1090426790  |z (OCoLC)1090499652  |z (OCoLC)1090543366  |z (OCoLC)1090752829  |z (OCoLC)1090762750  |z (OCoLC)1164468969 
037 |a 9781119457787  |b Wiley 
042 |a pcc 
050 1 4 |a TK5102.9  |b .C3195 2019 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.382/23  |2 23 
049 |a UAMI 
100 1 |a Candy, James V.,  |e author. 
245 1 0 |a Model-based processing :  |b an applied subspace identification approach /  |c James V. Candy, Lawrence Livermore National Laboratory, University of California Santa Barbara. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xxv, 511 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Provides a model-based "bridge" for signal processors/control engineers enabling a coupling and motivation for model development and subsequent processor designs/applications - Incorporates an in-depth treatment of the subspace approach that applies a variety of the subspace algorithm to synthesized examples and actual applications - Introduces new, fast subspace identifiers, capable of developing the required model for processing/controls Market description: Primary audience: advanced seniors, 1st year graduate student (engineering, sciences) Secondary audience: engineering professionals"--  |c Provided by publisher. 
588 0 |a Online resource; title from digital title page (viewed on April 01, 2019). 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Acknowledgements; Glossary; Chapter 1 Introduction; 1.1 Background; 1.2 Signal Estimation; 1.3 Model-Based Processing; 1.4 Model-Based Identification; 1.5 Subspace Identification; 1.6 Notation and Terminology; 1.7 Summary; MATLAB Notes; References; Problems; Chapter 2 Random Signals and Systems; 2.1 Introduction; 2.2 Discrete Random Signals; 2.3 Spectral Representation of Random Signals; 2.4 Discrete Systems with Random Inputs; 2.4.1 Spectral Theorems; 2.4.2 ARMAX Modeling; 2.5 Spectral Estimation 
505 8 |a 2.5.1 Classical (Nonparametric) Spectral Estimation2.5.1.1 Correlation Method (Blackman-Tukey); 2.5.1.2 Average Periodogram Method (Welch); 2.5.2 Modern (Parametric) Spectral Estimation; 2.5.2.1 Autoregressive (All-Pole) Spectral Estimation; 2.5.2.2 Autoregressive Moving Average Spectral Estimation; 2.5.2.3 Minimum Variance Distortionless Response (MVDR) Spectral Estimation; 2.5.2.4 Multiple Signal Classification (MUSIC) Spectral Estimation; 2.6 Case Study: Spectral Estimation of Bandpass Sinusoids; 2.7 Summary; Matlab Notes; References; Problems 
505 8 |a Chapter 3 State-Space Models for Identification3.1 Introduction; 3.2 Continuous-Time State-Space Models; 3.3 Sampled-Data State-Space Models; 3.4 Discrete-Time State-Space Models; 3.4.1 Linear Discrete Time-Invariant Systems; 3.4.2 Discrete Systems Theory; 3.4.3 Equivalent Linear Systems; 3.4.4 Stable Linear Systems; 3.5 Gauss-Markov State-Space Models; 3.5.1 Discrete-Time Gauss-Markov Models; 3.6 Innovations Model; 3.7 State-Space Model Structures; 3.7.1 Time-Series Models; 3.7.2 State-Space and Time-Series Equivalence Models; 3.8 Nonlinear (Approximate) Gauss-Markov State-Space Models 
505 8 |a 3.9 SummaryMATLAB Notes; References; Chapter 4 Model-Based Processors; 4.1 Introduction; 4.2 Linear Model-Based Processor: Kalman Filter; 4.2.1 Innovations Approach; 4.2.2 Bayesian Approach; 4.2.3 Innovations Sequence; 4.2.4 Practical Linear Kalman Filter Design: Performance Analysis; 4.2.5 Steady-State Kalman Filter; 4.2.6 Kalman Filter/Wiener Filter Equivalence; 4.3 Nonlinear State-Space Model-Based Processors; 4.3.1 Nonlinear Model-Based Processor: Linearized Kalman Filter; 4.3.2 Nonlinear Model-Based Processor: Extended Kalman Filter 
505 8 |a 4.3.3 Nonlinear Model-Based Processor: Iterated-Extended Kalman Filter4.3.4 Nonlinear Model-Based Processor: Unscented Kalman Filter; 4.3.5 Practical Nonlinear Model-Based Processor Design: Performance Analysis; 4.3.6 Nonlinear Model-Based Processor: Particle Filter; 4.3.7 Practical Bayesian Model-Based Design: Performance Analysis; 4.4 Case Study: 2D-Tracking Problem; 4.5 Summary; MATLAB Notes; References; Problems; Chapter 5 Parametrically Adaptive Processors; 5.1 Introduction; 5.2 Parametrically Adaptive Processors: Bayesian Approach 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Signal processing  |x Digital techniques  |x Mathematics. 
650 0 |a Automatic control  |x Mathematical models. 
650 0 |a Invariant subspaces. 
650 6 |a Traitement du signal  |x Techniques numériques  |x Mathématiques. 
650 6 |a Commande automatique  |x Modèles mathématiques. 
650 6 |a Sous-espaces invariants. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Automatic control  |x Mathematical models  |2 fast 
650 7 |a Invariant subspaces  |2 fast 
650 7 |a Signal processing  |x Digital techniques  |x Mathematics  |2 fast 
776 0 8 |i Print version:  |a Candy, James V.  |t Model-based processing.  |d Hoboken, NJ : John Wiley & Sons, Inc., [2018]  |z 9781119457763  |w (DLC) 2018044855 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119457763/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a IEEE  |b IEEE  |n 8788351 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5732749 
938 |a EBSCOhost  |b EBSC  |n 2089011 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00756754 
938 |a YBP Library Services  |b YANK  |n 16122076 
938 |a YBP Library Services  |b YANK  |n 16127693 
994 |a 92  |b IZTAP