|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1057238048 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
181009t20192019njua ob 001 0 eng |
010 |
|
|
|a 2018047949
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d OCLCO
|d OCLCF
|d DG1
|d N$T
|d YDX
|d RECBK
|d UKMGB
|d EBLCP
|d OCLCQ
|d SFB
|d K6U
|d IEEEE
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB938058
|2 bnb
|
016 |
7 |
|
|a 019269532
|2 Uk
|
016 |
|
|
|z 019269532 (print)
|
019 |
|
|
|a 1090426790
|a 1090499652
|a 1090543366
|a 1090752829
|a 1090762750
|a 1164468969
|
020 |
|
|
|a 9781119457770
|q (electronic book)
|
020 |
|
|
|a 1119457777
|q (electronic book)
|
020 |
|
|
|a 9781119457787
|q (electronic publication)
|
020 |
|
|
|a 1119457785
|q (electronic publication)
|
020 |
|
|
|a 9781119457695
|q (electronic book)
|
020 |
|
|
|a 1119457696
|q (electronic book)
|
020 |
|
|
|z 9781119457763
|q (hardcover)
|
020 |
|
|
|z 1119457769
|
024 |
7 |
|
|a 10.1002/9781119457695
|2 doi
|
029 |
1 |
|
|a AU@
|b 000064319362
|
029 |
1 |
|
|a CHNEW
|b 001048766
|
029 |
1 |
|
|a CHVBK
|b 565571656
|
029 |
1 |
|
|a UKMGB
|b 019269532
|
029 |
1 |
|
|a AU@
|b 000068988727
|
035 |
|
|
|a (OCoLC)1057238048
|z (OCoLC)1090426790
|z (OCoLC)1090499652
|z (OCoLC)1090543366
|z (OCoLC)1090752829
|z (OCoLC)1090762750
|z (OCoLC)1164468969
|
037 |
|
|
|a 9781119457787
|b Wiley
|
042 |
|
|
|a pcc
|
050 |
1 |
4 |
|a TK5102.9
|b .C3195 2019
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
0 |
|a 621.382/23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Candy, James V.,
|e author.
|
245 |
1 |
0 |
|a Model-based processing :
|b an applied subspace identification approach /
|c James V. Candy, Lawrence Livermore National Laboratory, University of California Santa Barbara.
|
264 |
|
1 |
|a Hoboken, NJ :
|b John Wiley & Sons, Inc.,
|c 2019.
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (xxv, 511 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b n
|2 rdamedia
|
338 |
|
|
|a online resource
|b nc
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "Provides a model-based "bridge" for signal processors/control engineers enabling a coupling and motivation for model development and subsequent processor designs/applications - Incorporates an in-depth treatment of the subspace approach that applies a variety of the subspace algorithm to synthesized examples and actual applications - Introduces new, fast subspace identifiers, capable of developing the required model for processing/controls Market description: Primary audience: advanced seniors, 1st year graduate student (engineering, sciences) Secondary audience: engineering professionals"--
|c Provided by publisher.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on April 01, 2019).
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Contents; Preface; Acknowledgements; Glossary; Chapter 1 Introduction; 1.1 Background; 1.2 Signal Estimation; 1.3 Model-Based Processing; 1.4 Model-Based Identification; 1.5 Subspace Identification; 1.6 Notation and Terminology; 1.7 Summary; MATLAB Notes; References; Problems; Chapter 2 Random Signals and Systems; 2.1 Introduction; 2.2 Discrete Random Signals; 2.3 Spectral Representation of Random Signals; 2.4 Discrete Systems with Random Inputs; 2.4.1 Spectral Theorems; 2.4.2 ARMAX Modeling; 2.5 Spectral Estimation
|
505 |
8 |
|
|a 2.5.1 Classical (Nonparametric) Spectral Estimation2.5.1.1 Correlation Method (Blackman-Tukey); 2.5.1.2 Average Periodogram Method (Welch); 2.5.2 Modern (Parametric) Spectral Estimation; 2.5.2.1 Autoregressive (All-Pole) Spectral Estimation; 2.5.2.2 Autoregressive Moving Average Spectral Estimation; 2.5.2.3 Minimum Variance Distortionless Response (MVDR) Spectral Estimation; 2.5.2.4 Multiple Signal Classification (MUSIC) Spectral Estimation; 2.6 Case Study: Spectral Estimation of Bandpass Sinusoids; 2.7 Summary; Matlab Notes; References; Problems
|
505 |
8 |
|
|a Chapter 3 State-Space Models for Identification3.1 Introduction; 3.2 Continuous-Time State-Space Models; 3.3 Sampled-Data State-Space Models; 3.4 Discrete-Time State-Space Models; 3.4.1 Linear Discrete Time-Invariant Systems; 3.4.2 Discrete Systems Theory; 3.4.3 Equivalent Linear Systems; 3.4.4 Stable Linear Systems; 3.5 Gauss-Markov State-Space Models; 3.5.1 Discrete-Time Gauss-Markov Models; 3.6 Innovations Model; 3.7 State-Space Model Structures; 3.7.1 Time-Series Models; 3.7.2 State-Space and Time-Series Equivalence Models; 3.8 Nonlinear (Approximate) Gauss-Markov State-Space Models
|
505 |
8 |
|
|a 3.9 SummaryMATLAB Notes; References; Chapter 4 Model-Based Processors; 4.1 Introduction; 4.2 Linear Model-Based Processor: Kalman Filter; 4.2.1 Innovations Approach; 4.2.2 Bayesian Approach; 4.2.3 Innovations Sequence; 4.2.4 Practical Linear Kalman Filter Design: Performance Analysis; 4.2.5 Steady-State Kalman Filter; 4.2.6 Kalman Filter/Wiener Filter Equivalence; 4.3 Nonlinear State-Space Model-Based Processors; 4.3.1 Nonlinear Model-Based Processor: Linearized Kalman Filter; 4.3.2 Nonlinear Model-Based Processor: Extended Kalman Filter
|
505 |
8 |
|
|a 4.3.3 Nonlinear Model-Based Processor: Iterated-Extended Kalman Filter4.3.4 Nonlinear Model-Based Processor: Unscented Kalman Filter; 4.3.5 Practical Nonlinear Model-Based Processor Design: Performance Analysis; 4.3.6 Nonlinear Model-Based Processor: Particle Filter; 4.3.7 Practical Bayesian Model-Based Design: Performance Analysis; 4.4 Case Study: 2D-Tracking Problem; 4.5 Summary; MATLAB Notes; References; Problems; Chapter 5 Parametrically Adaptive Processors; 5.1 Introduction; 5.2 Parametrically Adaptive Processors: Bayesian Approach
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Signal processing
|x Digital techniques
|x Mathematics.
|
650 |
|
0 |
|a Automatic control
|x Mathematical models.
|
650 |
|
0 |
|a Invariant subspaces.
|
650 |
|
6 |
|a Traitement du signal
|x Techniques numériques
|x Mathématiques.
|
650 |
|
6 |
|a Commande automatique
|x Modèles mathématiques.
|
650 |
|
6 |
|a Sous-espaces invariants.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Automatic control
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Invariant subspaces
|2 fast
|
650 |
|
7 |
|a Signal processing
|x Digital techniques
|x Mathematics
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Candy, James V.
|t Model-based processing.
|d Hoboken, NJ : John Wiley & Sons, Inc., [2018]
|z 9781119457763
|w (DLC) 2018044855
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781119457763/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a IEEE
|b IEEE
|n 8788351
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5732749
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2089011
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00756754
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16122076
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16127693
|
994 |
|
|
|a 92
|b IZTAP
|