|
|
|
|
LEADER |
00000cgm a2200000 i 4500 |
001 |
OR_on1044741291 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cna|||||||| |
007 |
vz czazuu |
008 |
180716s2017 xx 039 o vleng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d OCLCF
|d TOH
|d S9I
|d UAB
|d HS0
|d OCLCO
|d OCLCQ
|d OCLCO
|
035 |
|
|
|a (OCoLC)1044741291
|
037 |
|
|
|a CL0500000979
|b Safari Books Online
|
050 |
|
4 |
|a QA76.87
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gonzalez-Fierro, Miguel,
|e on-screen presenter.
|
245 |
1 |
0 |
|a Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines /
|c Miguel Gonzalez-Fierro.
|
264 |
|
1 |
|a [Place of publication not identified] :
|b O'Reilly Media,
|c [2017]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (1 streaming video file (38 min., 5 sec.))
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
337 |
|
|
|a video
|b v
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
380 |
|
|
|a Videorecording
|
511 |
0 |
|
|a Presenter, Miguel Gonzalez-Fierro.
|
500 |
|
|
|a Title from title screen (viewed July 12, 2018).
|
520 |
|
|
|a A presentation from the Strata Data 2017 London conference.
|
520 |
|
|
|a "Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
611 |
2 |
0 |
|a Strata Data Conference
|d (2017 :
|c London, Great Britain)
|
650 |
|
0 |
|a Neural networks (Computer science)
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Ubiquitous computing.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Neural Networks, Computer
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Réseaux neuronaux (Informatique)
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Informatique omniprésente.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Neural networks (Computer science)
|2 fast
|0 (OCoLC)fst01036260
|
650 |
|
7 |
|a Ubiquitous computing.
|2 fast
|0 (OCoLC)fst01160283
|
655 |
|
4 |
|a Electronic videos.
|
710 |
2 |
|
|a O'Reilly & Associates,
|e publisher.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/9781492037316/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|