Cargando…

Deep learning with PyTorch /

"This video course will get you up-and-running with one of the most cutting-edge deep learning libraries: PyTorch. Written in Python, PyTorch is grabbing the attention of all data science professionals due to its ease of use over other libraries and its use of dynamic computation graphs. In thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Saha, Anand (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1043906469
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180711s2018 xx 283 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d S9I  |d UAB  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000067116734 
035 |a (OCoLC)1043906469 
037 |a CL0500000978  |b Safari Books Online 
050 4 |a QA76.87 
049 |a UAMI 
100 1 |a Saha, Anand,  |e speaker. 
245 1 0 |a Deep learning with PyTorch /  |c Anand Saha. 
264 1 |a [Place of publication not identified] :  |b Packt,  |c [2018] 
300 |a 1 online resource (1 streaming video file (4 hr., 42 min., 46 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
511 0 |a Presenter, Anand Saha. 
500 |a Title from title screen (viewed July 11, 2018). 
500 |a Date of publication from resource description page. 
520 |a "This video course will get you up-and-running with one of the most cutting-edge deep learning libraries: PyTorch. Written in Python, PyTorch is grabbing the attention of all data science professionals due to its ease of use over other libraries and its use of dynamic computation graphs. In this course, you will learn how to accomplish useful tasks using Convolutional Neural Networks to process spatial data such as images and using Recurrent Neural Networks to process sequential data such as texts. You will explore how you can make use of unlabeled data using Auto Encoders. You will also be training a neural network to learn how to balance a pole all by itself, using Reinforcement Learning. Throughout this journey, you will implement various mechanisms of the PyTorch framework to do these tasks. By the end of the video course, you will have developed a good understanding of, and feeling for, the algorithms and techniques used. You'll have a good knowledge of how PyTorch works and how you can use it in to solve your daily machine learning problems."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 4 |a Electronic videos. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781788475266/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP