Cargando…

Introduction to deep learning using PyTorch : create simple neural networks in Python using PyTorch /

"This video will serve as an introduction to PyTorch, a dynamic, deep learning framework in Python. In this video, you will learn to create simple neural networks, which are the backbone of artificial intelligence. We will start with fundamental concepts of deep learning (including feed forward...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1023864125
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180222s2018 xx 087 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d S9I  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1023864125 
037 |a CL0500000941  |b Safari Books Online 
050 4 |a QA76.87 
049 |a UAMI 
100 1 |a Mohandas, Goku,  |e on-screen presenter. 
245 1 0 |a Introduction to deep learning using PyTorch :  |b create simple neural networks in Python using PyTorch /  |c with Goku Mohandas & Alfredo Canziani. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2018] 
300 |a 1 online resource (1 streaming video file (1 hr., 27 min.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
504 |a Includes bibliographical references and index. 
500 |a Title from title screen (Safari, viewed February 22, 2018). 
500 |a Release date from resource description page (Safari, viewed February 22, 2018). 
511 0 |a Presenters, Goku Mohandas, Alfredo Canziani. 
520 |a "This video will serve as an introduction to PyTorch, a dynamic, deep learning framework in Python. In this video, you will learn to create simple neural networks, which are the backbone of artificial intelligence. We will start with fundamental concepts of deep learning (including feed forward networks, back-propagation, loss functions, etc.) and then dive into using PyTorch tensors to easily create our networks. Finally, we will CUDA render our code in order to be GPU-compatible for even faster model training."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Canziani, Alfredo,  |e on-screen presenter. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491989944/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP