Deploying machine learning models as microservices using Docker : a REST-based architecture for serving ML model outputs at scale /
"Modern applications running in the cloud often rely on REST-based microservices architectures by using Docker containers. Docker enables your applications to communicate between one another and to compose and scale various components. Data scientists use these techniques to efficiently scale t...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | Slepicka, Jason (Auteur) |
Format: | Électronique Vidéo |
Langue: | Inglés |
Publié: |
[Place of publication not identified] :
O'Reilly,
2017.
|
Sujets: | |
Accès en ligne: | Texto completo (Requiere registro previo con correo institucional) |
Documents similaires
-
Building machine learning powered applications : going from idea to product /
par: Ameisen, Emmanuel
Publié: (2020) -
Kikai gakushū ni yoru jitsuyō apurikēshon kōchiku : jirei o tsūjite manabu, sekkei kara honban kadō made no purosesu /
par: Ameisen, Emmanuel
Publié: (2021) -
Managing data science : effective strategies to manage data science projects and build a sustainable team /
par: Dubovikov, Kirill
Publié: (2019) -
Managing data science : effective strategies to manage data science projects and build a sustainable team /
par: Dubovikov, Kirill
Publié: (2019) -
Machine learning for developers : uplift your regular applications with the power of statistics, analytics, and machine learning /
par: Bonnin, Rodolfo
Publié: (2017)