Simulation of dynamic systems with MATLAB® and Simulink® /
"Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new s...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press,
2017.
|
Edición: | Third edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Contents
- Foreword
- Preface
- About the Authors
- Chapter 1: Mathematical Modeling
- 1.1 Introduction
- 1.1.1 Importance of Models
- 1.2 Derivation of A Mathematical Model
- 1.3 Difference Equations
- 1.4 First Look at Discrete-Time Systems
- 1.4.1 Inherently Discrete-Time Systems
- 1.5 Case Study: Population Dynamics (Single Species)
- Chapter 2: Continuous-Time Systems
- 2.1 Introduction
- 2.2 First-Order Systems
- 2.2.1 Step Response of First-Order Systems
- 2.3 Second-Order Systems
- 2.3.1 Conversion of Two First-Order Equations to a Second-Order Model
- 2.4 Simulation Diagrams
- 2.4.1 Systems of Equations
- 2.5 Higher-Order Systems
- 2.6 State Variables
- 2.6.1 Conversion from Linear State Variable Form to Single Input-Single Output Form
- 2.6.2 General Solution of the State Equations
- 2.7 Nonlinear Systems
- 2.7.1 Friction
- 2.7.2 Dead Zone and Saturation
- 2.7.3 Backlash
- 2.7.4 Hysteresis
- 2.7.5 Quantization
- 2.7.6 Sustained Oscillations and Limit Cycles
- 2.8 Case Study: Submarine Depth Control System
- Chapter 3: Elementary Numerical Integration
- 3.1 Introduction
- 3.2 Discrete-Time System Approximation of a Continuous First-Order System
- 3.3 Euler Integration
- 3.3.1 Explicit Euler Integration
- 3.3.2 Implicit Euler Integration
- 3.4 Trapezoidal Integration
- 3.5 Discrete Approximation of Nonlinear First-Order Systems
- 3.6 Discrete State Equations
- 3.7 Improvements to Euler Integration
- 3.7.1 Improved Euler Integration
- 3.7.2 Modified Euler Integration
- 3.7.3 Discrete-Time System Matrices
- 3.8 Case Study: Vertical Ascent of a Diver
- Chapter 4: Linear Systems Analysis
- 4.1 Introduction
- 4.2 Laplace Transform
- 4.2.1 Properties of the Laplace Transform
- 4.2.2 Inverse Laplace Transform.
- 4.2.3 Laplace Transform of the System Response
- 4.2.4 Partial Fraction Expansion
- 4.3 Transfer Function
- 4.3.1 Impulse Function
- 4.3.2 Relationship between Unit Step Function and Unit Impulse Function
- 4.3.3 Impulse Response
- 4.3.4 Relationship between Impulse Response and Transfer Function
- 4.3.5 Systems with Multiple Inputs and Outputs
- 4.3.6 Transformation from State Variable Model to Transfer Function
- 4.4 Stability of Linear Time Invariant Continuous-Time Systems
- 4.4.1 Characteristic Polynomial
- 4.4.2 Feedback Control System
- 4.5 Frequency Response of LTI Continuous-Time Systems
- 4.5.1 Stability of Linear Feedback Control Systems Based on Frequency Response
- 4.6 z-Transform
- 4.6.1 Discrete-Time Impulse Function
- 4.6.2 Inverse z-Transform
- 4.6.3 Partial Fraction Expansion
- 4.7 z-Domain Transfer Function
- 4.7.1 Nonzero Initial Conditions
- 4.7.2 Approximating Continuous-Time System Transfer Functions
- 4.7.3 Simulation Diagrams and State Variables
- 4.7.4 Solution of Linear Discrete-Time State Equations
- 4.7.5 Weighting Sequence (Impulse Response Function)
- 4.8 Stability of LTI Discrete-Time Systems
- 4.8.1 Complex Poles of H(z)
- 4.9 Frequency Response of Discrete-Time Systems
- 4.9.1 Steady-State Sinusoidal Response
- 4.9.2 Properties of the Discrete-Time Frequency Response Function
- 4.9.3 Sampling Theorem
- 4.9.4 Digital Filters
- 4.10 Control System Toolbox
- 4.10.1 Transfer Function Models
- 4.10.2 State-Space Models
- 4.10.3 State-Space/Transfer Function Conversion
- 4.10.4 System Interconnections
- 4.10.5 System Response
- 4.10.6 Continuous-/Discrete-Time System Conversion
- 4.10.7 Frequency Response
- 4.10.8 Root Locus
- 4.11 Case Study: Longitudinal Control of an Aircraft
- 4.11.1 Digital Simulation of Aircraft Longitudinal Dynamics.
- 4.11.2 Simulation of State Variable Model
- 4.12 Case Study: Notch Filter for Electrocardiograph Waveform
- 4.12.1 Multinotch Filters
- Chapter 5: Simulink®
- 5.1 Introduction
- 5.2 Building a Simulink Model
- 5.2.1 The Simulink Library
- 5.2.2 Running a Simulink Model
- 5.3 Simulation of Linear Systems
- 5.3.1 Transfer Fcn Block
- 5.3.2 State-Space Block
- 5.4 Algebraic Loops
- 5.4.1 Eliminating Algebraic Loops
- 5.4.2 Algebraic Equations
- 5.5 More Simulink Blocks
- 5.5.1 Discontinuities
- 5.5.2 Friction
- 5.5.3 Dead Zone and Saturation
- 5.5.4 Backlash
- 5.5.5 Hysteresis
- 5.5.6 Quantization
- 5.6 Subsystems
- 5.6.1 PHYSBE
- 5.6.2 Car-Following Subsystem
- 5.6.3 Subsystem Using Fcn Blocks
- 5.7 Discrete-Time Systems
- 5.7.1 Simulation of an Inherently Discrete-Time System
- 5.7.2 Discrete-Time Integrator
- 5.7.3 Centralized Integration
- 5.7.4 Digital Filters
- 5.7.5 Discrete-Time Transfer Function
- 5.8 MATLAB and Simulink Interface
- 5.9 Hybrid Systems: Continuous- and Discrete-Time Components
- 5.10 Monte Carlo Simulation
- 5.10.1 Monte Carlo Simulation Requiring Solution of a Mathematical Model
- 5.11 Case Study: Pilot Ejection
- 5.12 Case Study: Kalman Filtering
- 5.12.1 Continuous-Time Kalman Filter
- 5.12.2 Steady-State Kalman Filter
- 5.12.3 Discrete-Time Kalman Filter
- 5.12.4 Simulink Simulations
- 5.12.5 Summary
- 5.13 Case Study: Cascaded Tanks with Flow Logic Control
- Chapter 6: Intermediate Numerical Integration
- 6.1 Introduction
- 6.2 Runge-Kutta (RK) (One-Step Methods)
- 6.2.1 Taylor Series Method
- 6.2.2 Second-Order Runge-Kutta Method
- 6.2.3 Truncation Errors
- 6.2.4 High-Order Runge-Kutta Methods
- 6.2.5 Linear Systems: Approximate Solutions Using RK Integration
- 6.2.6 Continuous-Time Models with Polynomial Solutions
- 6.2.7 Higher-Order Systems
- 6.3 Adaptive Techniques.
- 6.3.1 Repeated RK with Interval Halving
- 6.3.2 Constant Step Size (T = 1 min)
- 6.3.3 Adaptive Step Size (Initial T = 1 min)
- 6.3.4 RK-Fehlberg
- 6.4 Multistep Methods
- 6.4.1 Explicit Methods
- 6.4.2 Implicit Methods
- 6.4.3 Predictor-Corrector Methods
- 6.5 Stiff Systems
- 6.5.1 Stiffness Property in First-Order System
- 6.5.2 Stiff Second-Order System
- 6.5.3 Approximating Stiff Systems with Lower-Order Nonstiff System Models
- 6.6 Lumped Parameter Approximation of Distributed Parameter Systems
- 6.6.1 Nonlinear Distributed Parameter System
- 6.7 Systems with Discontinuities
- 6.7.1 Physical Properties and Constant Forces Acting on the Pendulum Bob
- 6.8 Case Study: Spread of an Epidemic
- Chapter 7: Simulation Tools
- 7.1 Introduction
- 7.2 Steady-State Solver
- 7.2.1 Trim Function
- 7.2.2 Equilibrium Point For a Nonautonomous System
- 7.3 Optimization of Simulink Models
- 7.3.1 Gradient Vector
- 7.3.2 Optimizing Multiparameter Objective Functions Requiring Simulink Models
- 7.3.3 Parameter Identification
- 7.3.4 Example of a Simple Gradient Search
- 7.3.5 Optimization of Simulink Discrete-Time System Models
- 7.4 Linearization
- 7.4.1 Deviation Variables
- 7.4.2 Linearization of Nonlinear Systems in State Variable Form
- 7.4.3 Linmod Function
- 7.4.4 Multiple Linearized Models for a Single System
- 7.5 Adding Blocks to The Simulink Library Browser
- 7.5.1 Introduction
- 7.5.2 Summary
- 7.6 Simulation Acceleration
- 7.6.1 Introduction
- 7.6.2 Profiler
- 7.6.3 Summary
- 7.7 Black Swans
- 7.7.1 Introduction
- 7.7.2 Modeling Rare Events
- 7.7.3 Measurement of Portfolio Risk
- 7.7.4 Exposing Black Swans
- 7.7.4.1 Percent Point Functions (PPFs)
- 7.7.4.2 Stochastic Optimization
- 7.7.5 Summary
- 7.7.6 Acknowledgements
- 7.7.7 References.
- 7.7.8 Appendix-Mathematical Properties of the Log-Stable Distribution
- 7.8 The SIPmath Standard
- 7.8.1 Introduction
- 7.8.2 Standard Specification
- 7.8.3 SIP Details
- 7.8.4 SLURP Details
- 7.8.5 SIPs/SLURPs and MATLAB
- 7.8.6 Summary
- 7.8.7 Appendix
- 7.8.8 References
- Chapter 8: Advanced Numerical Integration
- 8.1 Introduction
- 8.2 Dynamic Errors (Characteristic Roots, Transfer Function)
- 8.2.1 Discrete-Time Systems and the Equivalent Continuous-Time Systems
- 8.2.2 Characteristic Root Errors
- 8.2.3 Transfer Function Errors
- 8.2.4 Asymptotic Formulas for Multistep Integration Methods
- 8.2.5 Simulation of Linear System with Transfer Function H(s)
- 8.3 Stability of Numerical Integrators
- 8.3.1 Adams-Bashforth Numerical Integrators
- 8.3.2 Implicit Integrators
- 8.3.3 Runga-Kutta (RK) Integration
- 8.4 Multirate Integration
- 8.4.1 Procedure for Updating Slow and Fast States: Master/Slave = RK-4/RK-4
- 8.4.2 Selection of Step Size Based on Stability
- 8.4.3 Selection of Step Size Based on Dynamic Accuracy
- 8.4.4 Analytical Solution for State Variables
- 8.4.5 Multirate Integration of Aircraft Pitch Control System
- 8.4.6 Nonlinear Dual Speed Second-Order System
- 8.4.7 Multirate Simulation of Two-Tank System
- 8.4.8 Simulation Trade-Offs with Multirate Integration
- 8.5 Real-Time Simulation
- 8.5.1 Numerical Integration Methods Compatible with Real-Time Operation
- 8.5.2 RK-1 (Explicit Euler)
- 8.5.3 RK-2 (Improved Euler)
- 8.5.4 RK-2 (Modified Euler)
- 8.5.5 RK-3 (Real-Time Incompatible)
- 8.5.6 RK-3 (Real-Time Compatible)
- 8.5.7 RK-4 (Real-Time Incompatible)
- 8.5.8 Multistep Integration Methods
- 8.5.9 Stability of Real-Time Predictor-Corrector Method
- 8.5.10 Extrapolation of Real-Time Inputs
- 8.5.11 Alternate Approach to Real-Time Compatibility: Input Delay.